
Chapter 9

ESTIMATION AND FORECASTING

9.1 Introduction
A revenue management system requires forecasts of quantities such as

demand, price sensitivity, and cancellation probabilities, and its perfor-
mance depends critically on the quality of these forecasts. Indeed, some
industry estimates suggest that a 20% reduction of forecast error can
translate into a 1% incremental increase in revenue generated from the
RM system (Poelt [424]). While it is difficult to generalize from such
figures, there is little doubt that good forecasting is vitally important for
RM. In practice, forecasting is a high-profile task of RM, consuming the
vast majority of development, maintenance, and implementation time.

The term forecast may conjure up the notion of a single number, such
as the demand for a specific day on a specific flight in the future or
demand for a particular item at a retail store (a so-called point esti-
mate). A. certain amount of misunderstanding about RM forecasting is
not uncommon among nontechnical analysts and managers, who are ac-
customed to thinking of forecasts as a single number. However, a point
estimate is almost never accurate; a forecast is more complicated than
a single number and needs to be understood in statistical terms that
account for the inherent uncertainty in predicting future outcomes.

In this chapter, we examine forecasting for RM. We start with an
overview of the role of forecasting in RM—surveying the available data
sources, forecasting strategies and methodologies, and factors involved
in actually operationalizing a RM forecasting system. The remainder of
the chapter describes estimation and forecasting methods in more depth.

While our discussion is centered on RM forecasting, most of the tech-
niques we describe are not particular to RM and as such can safely



408 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

be described as standard. Indeed, there are many excellent textbooks
devoted to estimation and forecasting, and it is not our intention to
approach them in scope and depth. Rather, this chapter is intended
as a primer on the subject—sufficient in coverage to give a good sense
of the range of methods and issues involved in RM forecasting but not
providing an in-depth reference on any one method. We do, however,
give enough detail to understand and implement at least a basic version
of each method. To implement and maintain a high-quality, production-
level RM forecasting system, one needs to know more about the nuances
of each forecasting method, and the reader in this situation is encour-
aged to consult a specialized source for such information. (The Notes
and Sources section at the end of the chapter contains references to a
number of books dedicated to estimation and forecasting.)

9.1.1 The Forecasting Module of RM Systems
RM forecasting presents many challenges to a system designer. For

one, a significant amount of programming work is involved in collecting
and manipulating the data to convert it into the required data feeds for
the forecasting module. Large volumes of transactional data have to be
gathered from multiple sources, either in real time or on an overnight
batch basis. The database design is an important issue because in many
large-scale implementations, an immense number of records have to be
retrieved, updated, and added within a small time window. Data back-
up procedures take up further time. All these data and systems issues
must be addressed prior to actual forecasting itself.

Figure 9.1 shows a schematic of the process flow of a typical quantity-
based RM system and where the forecasting module resides in the process.
The outputs of the forecasting module are fed to the optimization mod-
ule, which produces RM controls such as markdown prices, booking
limits, bid prices, and overbooking limits. In the stage between forecast-
ing and optimization, most RM systems also give analysts monitoring
and overriding ability over the forecasts. These so-called user influ-
ences are used to either increase or decrease the forecasts at different
levels of aggregation before they are used in optimization. Indeed, in
most quantity-based RM systems, analysts are not permitted to change
capacity controls directly but can change them only indirectly by manip-
ulating the forecast inputs. This practice is based on the belief (wide-
spread among RM practitioners) that knowledge of markets or special
conditions can sometimes make human analysts better than algorithms
at forecasting demand, but rarely, if ever, can human analysts set RM
controls better than optimization algorithms.
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In most RM systems, forecasting is automated, transactional, and
data-driven—as opposed to qualitative (such as expert opinion) or
survey-based. This is primarily due to the sheer volume of forecasts
that have to be made and the tight processing-time requirements. These
practical constraints limit the choice of forecasting algorithms. They also
limit the types of data that can reasonably be collected and the amount
of time a user can spend calibrating and verifying forecasts. Often, cer-
tain forecasting procedures, even if they give superior forecasts, may not
be a viable option because they take too long to run, require data that is
too expensive to collect (say, using surveys), or require too much expert,
manual effort to calibrate.

For quantity-based RM, most systems use time-series methods, which
use historical data to project the future. For price-based RM systems
(retail RM, for example), one is usually interested in forecasting demand
as a function of marketing variables such as price or promotion. As a
result, causal forecast models, which use explanatory variables such as
prices, weather or economic indicators, play a bigger role in price-based
RM.

9.1.2 What Forecasts Are Required?
RM forecasting requirements are driven by the input requirements

of the optimization module. As we saw in previous chapters, most op-
timization models use stochastic models of demand and hence require
an estimate of the complete probability distribution or at least parame-
ter estimates (e.g., means and variances) for an assumed distribution.
Moreover, forecasting aggregate demand is just one of a host of quan-
tities that need to be estimated in a RM system. Many other features
of the demand—how it evolves over time, what percentage cancel, how
it responds to a promotion—are also important in making good control
decisions, and need forecasting.

Quantity-Based RM Forecasts Quantity-based RM industries like
airlines and hotels have a wide variety of forecasting requirements. For
example, in addition to the demand data, characterizing the way reser-
vations for different customer types arrive during the booking period is
important for some optimization models. Thus, so-called booking-curve
or booking-profile forecasting is usually an important task.

Cancellation and no-show probabilities usually have to be estimated
as well. Cancellation probabilities tend to be a function of time. (A
customer who books early may have a higher probability of cancelling
than one who books later.) Therefore, forecasting a cancellation curve
over time may be more appropriate, giving better information to the
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optimization module. No-shows occur at the time of service; hence,
assuming that a customer shows up with a certain probability is often
an appropriate model of no-shows (see Chapter 4). Both no-show and
cancellation-rate forecasts have to be calculated for future customers as
well as customers who have already booked. For existing reservations,
however, additional sources of information, such as the customer’s own
past history of cancelling, whether the reservation has been paid and
ticketed, and characteristics of how the reservation was made (channel,
time, etc.) can be used, increasing the data-gathering requirements.

Revenue values are also critical inputs to optimization modules. Of-
ten, these values change over time or are uncertain, so the prices at which
the products will be sold in the future may have to be forecasted. Pre-
dicting revenue values can be a major challenge, especially when prices
change rapidly and competitive forces drive pricing.

Optimization models may also require estimates of cross-selling and
up-selling probabilities. The buy-up factors discussed in Section 2.6.1
may have to be estimated from historical data. Spill and recapture are
two other quantities that are sometimes required in setting (or at least
managing) RM controls. Spill refers to the amount of demand that is
lost by closing down a class or because a compartment is sold out, while
recapture is the amount of this spilled demand that is recaptured by the
firm’s substitute products. The discrete-choice model of Section 2.6.2,
requires estimates of the parameters of a choice model, sometimes by
channel of distribution or by customer segment.

Price-Based RM Forecasts For price-based RM, somewhat different
forecasts are required. One common requirement is an estimate of the
parameters of a demand function—or at least an estimate of the price
sensitivity at the current price. Cross-price elasticity estimates may
also be required when there are significant substitution effects (say, for
category pricing in a retail store), which vastly increases the scale of the
forecasting task. In addition, forecasts of demand at the current price,
the size of the potential customer population, stockout and low-inventory
effects, and switching behavior may be required. Such estimates require
looking at the historical price-demand relationship of the product or
similar products or at intertemporal panel tracking data. Some retailers
have also tried intelligent experimentation in real time to estimate how
consumers will respond to various price changes (live price testing).

In summary, the forecasting requirements in even a modestly large RM
system are daunting, indeed. It is little wonder, then, that developing
a good forecasting system is so vitally important for a successful RM
implementation.
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9.1.3 Data Sources
Data is the life-blood of a forecasting system. Therefore, identifying

which sources of data are available and how they can best be used is an
important first step in developing a forecasting system.

Most RM systems in practice rely primarily on historical sales data
to construct forecasts. While this leads to highly efficient systems for
data collection, forecast calibration, and automated forecasting, relying
on historical data has its weaknesses. For example, in industries where
products change frequently—when an airline offers service to a new city
or at a new time for instance—there is often little historical data on
which to base forecasts. Similarly, in media RM, forecasts for rating of
new programs must be constructed despite the fact that their ratings
often have little relationship to the ratings observed for past programs.
Fashion apparel retailers, for instance, have to estimate sales of new
styles that may be only vaguely similar to the styles sold in the past.
In addition, even if the product stays constant, major changes in the
economy, competing technologies, or industry structure may render past
data of little use in predicting the future.

In short, if no explicit relationships with external data sources are
tracked, the forecasting system will be “blind” to outside events. The
same is true with respect to changes in competitors’ products and prices.
In cases where such external data is ignored, it is common practice in
RM to rely on analysts to monitor outside events and compensate by
adjusting forecasts appropriately through so-called user influences.

9.1.3.1 Sales-Transaction Data Sources
The main sources of data in most RM systems are transactional

databases—for example, reservation and property management systems
(PMSs), CRM and ERP databases, and retail inventory and scanner
databases. Further descriptions of these data sources are given in Chap-
ters 10 and 11. These sources may be centralized, independent entities
shared by other firms in the industry (such as GDSs of the airline in-
dustry selling MIDT data), a centralized facility within a company that
interfaces with several local systems (a retail chain’s point-of-sale (POS)
system linking all its stores), a local reservation system (a hotel PMS), or
customer-oriented databases with information on individual customers
and their purchase history (customer-relationship management (CRM)
systems and PNR databases).

For quantity-based RM, the most widely used transactional data
source is the reservations database. Reservation databases typically
store customer data in two formats: either as an aggregate number
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of bookings in a class (total bookings) or as information about each
individual booking, called a customer booking record (passenger name
record (PNR) in the airline industry). Forecasts may be based on either
the aggregate bookings or individual customer booking records. The
aggregate bookings data contain information only on the total number
booked in each fare class, while the individual booking records contain
much more specific information on each customer—such as their name,
address, booking time, number of units booked, amount paid, frequent
flyer or other loyalty program number, booking class, cancellation time,
capacity used (length of stay and room number for a hotel, car type and
duration for a rental-car company, or itinerary for an airline), ancillary
spending (dining expenses, telephone calls). The customer record may
also contain links to other customer records (for example, for a group
booking) that may be useful for forecasting.

For retail RM, factory-shipment data, store-level scanner data,
consumer-panel data, regional demographic data, and advertising and
promotions data are the primary data used. Industry-wide aggregate
scanner data (sold by firms such as Information Resources, Inc. and
A.C. Nielsen). Warehouse-shipment data can be obtained from Selling
Areas Marketing, Inc. (SAMI), which provides sales, average price, and
distribution information for the U.S.

Panel data, obtained from tracking purchases of a group of panelists
over time, provides valuable information on cross-sectional and intertem-
poral purchase behavior. Such data are widely used in retail and media
industries. A panel member’s purchase data is also linked to promotions,
availability, displays, advertising, couponing, and markdowns through
the time of purchase, allowing for precise inferences on preferences and
marketing influences. Many marketing research companies provide such
panel-data services.

9.1.3.2 Controls-Data Sources

In addition to sales information, databases often store information
on the controlling process itself. Examples of this kind of data include
records of when a class is closed for further bookings, snapshots of bid
prices used in the control, overbooking authorizations, past prices, and
promotion activities. Such information is of great use in correcting for
unobservable no-purchase decisions by potential customers (Section 9.4).

Industrywide database systems (such as a GDSs in the travel indus-
try) may also yield additional information for forecasting—for example,
the availability of competitor bookings, prices of competing products,
and market share. Many airline GDS companies make this information
available on a weekly or monthly basis on tapes called market infor-
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mation data tapes (MIDT). Although few airlines at present use this
information in their RM systems, it is useful for estimating competitive
market share, and for longer-term, strategic planning and analysis.

For markdown pricing and other price-based RM applications, the
control decisions are past history of prices and promotions. Most retail
POS systems store this information routinely. For in-store displays or
bundle pricing, the POS data has to be merged with a marketing data-
base. Inventory data is also provided by many retail POS systems, and
this data is useful for correcting for stockouts and broken-assortments
effects (missing color-size combinations).

9.1.3.3 Auxiliary Data Sources
A few auxiliary data sources also play a big role in RM forecasting

in some industries. For instance, currency exchange-rate and tax infor-
mation is necessary to keep track of revenue value for sales in different
countries. In the airline industry, the schedules and possible connections
(provided by firms such as OAG) are required to determine what markets
are being served. If a ticket is sold across multiple airlines, the various
prorating agreements affect the ultimate revenue value of each product
sold. A revenue accounting system keeps track of such agreements and
calculates the net revenue.

In broadcasting, ratings, customer location, and demographic infor-
mation is required. A causal forecasting method may take into account
information on the state of the economy, employment, income and sav-
ings rates, among other factors. A rental-car firm can use advance travel
bookings to predict its own demand at airport locations. Information on
ad-hoc events (special events) like conferences, sports events, concerts,
holidays, is also crucial in improving the accuracy of forecasts. Many
forecasting systems allow the users to manually enter information on
such events.

Many retail RM systems also use weather data, which is supplied
by several independent vendors via daily automated feeds. Short-term
weather forecasts guide discounting and stocking decisions (for example,
a snow-storm could suggest high demand for snow shovels). Weather
data also plays an important role in energy forecasting for electric power
generators and distributors.

Macroeconomic data (such as GNP growth rates and housing starts)
is rarely used in automated, tactical forecasting but frequently plays a
role in aggregate forecasts of factors such as competitors’ costs, industry
demand and market share, and broad consumer preferences. Statistics
on cost of labor are published by the Bureau of Labor Statistics (BLS)
in the United States in a monthly publication called Employment and
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Earnings, which provides average hourly earnings for workers by product
category. BLS also provides monthly producer price indexes on raw
materials.

For products sold through distributors, important data is not always
available. For example, an automobile manufacturer may not know the
final price paid by a customer because dealers have no obligation to
report this information back to the manufacturer. Similarly, trade pro-
motions may lead to increased shipments for the manufacturer, but the
distributor may simply stock up during the trade deal and sell at a
normal price, reducing the impact of the promotion. Lack of such infor-
mation is one of the impediments for many firms contemplating RM.

9.1.3.4 Partial-Bookings Data
In most quantity-based RM applications, bookings occur over an ex-

tended period of time, yet the product or service is provided on a very
frequent basis, often daily. For example, an airline may sell seats on a
flight that operates every day, but bookings can occur over a period of
12 months prior to departure; hotels take reservations for rooms for each
day, yet bookings are made many days or weeks in advance. In such sit-
uations, there are often large quantities of so-called partial-booking data
in the reservation system. While incomplete, such data is quite useful
for forecasting.

Figure 9.2 shows an example of partial-bookings data, indicating the
number of bookings observed each day for capacity in the past as well
as the future. The represents the date of service (such as the
departure date in the airline case or the check-in date for a hotel), and
the represents the number of days prior to the date of the service.

One way to use these partial histories of bookings is to forecast the
increments of demand for each booking day, rather than forecasting the
total demand to come. Thus, for example, data on the demand received
on the day prior to service can be used to predict demand on the

day prior to service in the future, even though the data may be
from a booking history that is incomplete. Such methods are discussed
in more detail in Section 9.3.9.

9.1.4 Design Decisions
After the data sources are identified, one has to make a number of

design decisions regarding the forecasting strategy and methodology.
Here we look at the main design decisions in qualitative terms.
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9.1.4.1 Parametric or Nonparametric Forecasts?
As mentioned in Section 9.1.2, in most RM forecasting we are in-

terested in estimating a probability distribution of future demand—or
in estimating demand as a function of price variables or product at-
tributes. Such estimates can be made in one of two ways. The first is
to assume a specific functional form and then estimate the parameters
of this functional form. This approach is called parametric estimation.
Alternatively, distributions or functions can be estimated directly based
on observed historical data, without assuming any a priori functional
form. This approach is called nonparametric estimation. Choosing be-
tween a parametric or nonparametric approach to forecasting is a basic
design decision.

While nonparametric methods are in a sense more general, they are
not necessarily a better choice. Nonparametric estimates suffer from
two serious drawbacks: First, because they do not use a functional form
to “fill in” for missing values, they often require much more information
than is available in many RM applications to obtain reasonable estimates
of a distribution or demand function. Second, even with sufficient data,
nonparametric estimates may not be as good at predicting the future,
even if they fit the historical data well. Parametric models are better
able to “smooth out” the noise inherent in raw data, which often results
in a more robust forecast. Indeed, we know of no RM systems that use
purely nonparametric methods to estimate demand, though several use
nonparametric methods in selected places. Neural networks, which are
sometimes viewed as semiparametric methods, have been reported in
several RM applications, and these we cover later in this chapter.
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Parametric methods usually are much more modest in their data re-
quirements, have the advantage of providing estimates of demand that
extend beyond the range of the observed data (allow for extrapolation),
and are generally more robust to errors and noise in the data. The
disadvantage of parametric techniques is that some properties of the
distribution must be assumed—for example, that it is symmetric about
the mean, has certain coefficients of variation, or has certain tail behav-
ior (the characteristics of the demand distribution for extreme values
of demand). Thus, parametric methods can suffer in terms of overall
forecasting accuracy if the actual demand distribution deviates signifi-
cantly from these assumptions (called specification errors). Because they
are more widely used in RM, we focus on parametric methods in this
chapter.

9.1.4.2 Levels of Aggregation
Forecasts can be made at different levels of aggregation as well, and

how to aggregate data and forecasts is another important design decision.
To give an example, airlines price their products by fare-basis codes
with a large number of fares-basis codes sold within each booking class.
Capacity control, however, is usually performed at the booking-class
level. How, then, should forecasting be handled? Should the demand
be forecast for each fare product (basis code) or each booking class?
That is, should we aggregate all the fare products in a booking class
and forecast at the level of the booking class? Or should we forecast at
the fare-product level and aggregate these forecasts into a forecast for
booking-class demand?

Another level-of-aggregation design decision comes up in network RM
(Chapter 3), where the optimization system requires a forecast of de-
mand for each multiresource product in the network. In principle, the
forecasts should be at the level of the network products (O&Ds or lengths
of stay) as this is the level required by network-optimization models.
However, many reservation systems do not collect data at this level of
detail. In the airline case, for example, reliable data may exist only
for individual flight legs, and we may have to heuristically disaggregate
leg-level forecasts into O&D, product-level forecasts.

Ultimately, however, we need to produce the forecasts required by the
optimization module. Continuing the airline example, this would imply
generating forecasts at the fare-product level if we were using a bid-price
control, but perhaps at the booking-class level if we were using a resource
level, booking-class-based control. On the other hand, the requirements
of the optimization module can often be manipulated. For example,
one can simply forecast at the booking-class level and then assume that
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all the demand in this booking class has the same (say, the average)
fare. In the network case, the RM system might be using a simple
single-resource heuristic to approximate the network RM problem, in
which case an aggregate forecast for each resource independently may
do just fine. Thus, the forecasting and optimization design decisions are
intimately related. Indeed, in practice it is hard to change one without
affecting the other.

In retail RM as well, the level of aggregation in forecasting is largely
governed by the data and optimization requirements. Store-level pricing
requires store-level estimates of demand and price sensitivity for each
product, whereas a model that optimizes prices set on a chainwide ba-
sis may not require this same level of detail. If household purchase
data (panel data) is available or if experiments or surveys can be con-
ducted, then one can forecast based on models of individual purchase
behavior and combine these to determine an aggregate demand function.
However, if only aggregate POS sales data can be obtained, one has to
estimate the aggregate demand function directly.

9.1.4.3 Bottom-Up versus Top-Down Strategies
Broadly speaking, there are two different strategies for aggregating

forecasting. In a bottom-up forecasting strategy, forecasting is performed
at a detailed level to generate subforecasts. The end forecast is then
constructed by aggregating these detailed subforecasts. In a top-down
forecasting strategy, forecasts are made at a high level of aggregation—a
superforecast—and then the end forecast is constructed by disaggregat-
ing these superforecasts down to the level of detail required. The follow-
ing are examples of bottom-up and top-down forecasting strategies.

Example 9.1  (BOTTOM-UP FORECASTING) An airline is interested in getting fore-
casts of load factors (occupancy) for each flight in each compartment for an upcoming
season. The airline stores data of each past customer, itinerary, and fare class. This
itinerary-level data is first used to make forecasts for the number of customers ex-
pected to book for each itinerary and fare-class combination for every day of the
season. Next, these detailed forecasts are added together to produce an aggregate
forecast for the seasonal load-factors.

Example 9.2  (TOP-DOWN FORECASTING) A hotel is interested in a forecast of the
number of people expected to book for each future date in each room-category and
length-of-stay combination. The hotel first forecasts the total number of guests who
will book to arrive on each day in each rate category (the superforecast). Then it
forecasts the fraction of guests that stay for a specified length of time (a length-of-stay
distribution). Finally, it combines these two components to arrive at an end forecast
of expected number who will start their stay on a specific date and stay a certain
number of days by multiplying the forecast for the aggregate number of guests on a
specific date by the estimate of the fraction that will stay for a given length of time.
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Which strategy is most appropriate is not always clear-cut. It depends
on the data that is available and accessible to an automated system on
a daily basis, the outputs required, and the types of forecasts already
being made and available for use. Moreover, the “right” answer in most
cases is that both strategies are required because certain phenomena can
be estimated only at a low level of aggregation, while others can be
estimated only at a high level of aggregation.

For example, it is clear that in an airline network if one wants an
estimate of demand for each itinerary and fare-class combination, then
aggregate booking-class or flight-leg data will not be sufficient; data for
each passenger itinerary is required. At the same time, such passenger-
level data is sparse, with often only a handful of bookings occurring for
any given combination in a year. Hence, aggregate phenomena such as
daily or weekly seasonalities, holiday effects, or upward or downward
trends in total demand are—for all practical purposes—unobservable
at the disaggregate level; one must look at aggregate booking data over
many itinerary and fare-class combinations to observe such effects. Even
with good passenger-level data, one may therefore need to aggregate
data and perform aggregate forecasts to identify important “large-scale”
phenomena. As a result, hybrid combinations of bottom-up and top-
down approaches are the norm in practice.

9.2 Estimation Methods
Estimation is the problem of finding model parameters that best de-

scribe a given set of observed data. Forecasting, in contrast, involves
predicting future, unobserved values. Thus, estimation is generally de-
scriptive (characterizing what has been observed), while forecasting is
predictive (characterizing what will be observed). Roughly, in the RM
context, estimation is the calibration of a forecasting model’s parameters
(hence it also is called forecast calibration) and is done relatively infre-
quently; while forecasting is the use of the estimated model to predict
future values, and is performed frequently on an operational basis.

For example, an estimate of price sensitivity based on past sales data
may be used in a forecast of future demand. Similarly, many forecasting
methods are based on estimating the parameters of a dynamic model
from historical demand data, which is subsequently used to predict fu-
ture values of demand. Yet this distinction between estimation and fore-
casting is not always very sharp. In some methods, such as the Kalman
filtering, estimation and forecasting work in lock-step, one after another.

Here we examine methodology for parameter estimation and discuss
some of the theoretical and practical issues that arise.



420 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

9.2.1 Estimators and Their Properties
An estimator represents, in essence, a formalized “guess” about the

parameters of the underlying distribution from which a sample (the ob-
served data) is assumed to be drawn. Estimators can take on many
forms and can be based on different criteria for a “best” guess. We use
demand estimation as our example, but the ideas apply more generally.

9.2.1.1 Nonparametric Estimators
Let the random variable denote the observation of demand,

and let denote the distribution of Nonparamet-
ric estimation methods do not make any assumptions on the underlying
distribution F(·). For example, we could estimate         by simply com-
puting the fraction of observations in the sample that are less than or
equal to for each value of This empirical distribution then forms a
nonparametric estimate of the true distribution

Nonparametric estimates of this type have the advantage of not re-
quiring any assumptions on the form of the distribution. However, as
mentioned earlier, they typically require more data to produce accurate
estimates and do not allow one to extrapolate beyond the observed data
easily. For example, if there were no observations less than 10 in a data
set, then the empirical distribution would estimate that
for all values of less than 10.

9.2.1.2 Parametric Estimators
For a parametric estimator, we assume that the underlying distribu-

tion of is of the form

where is a vector of M explanatory (independent)
variables (time, indicators of holiday events, prices, lagged observations
of itself, and so on) and is a M-dimensional vector
of parameters. For ease of exposition, we assume that the dimension of

and are the same, though this is not necessary.
Assume we have a sequence of N independent observations

with values for the explanatory vari-
ables, alternatively represented by vectors or by a N × M
matrix The estimation problem, then, is to
determine the unknown parameters using only the sample of the N ob-
servations (the data) and the values of the explanatory variables Y
corresponding to each observation (characteristics of the observed data).
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It is usually convenient to express the relationship between the de-
mand and the explanatory variables by a simple functional form con-
sisting of a systematic (deterministic) component and an additive noise
component:1

where the randomness comes from the error term Many of the re-
gression and time-series forecasting models of this chapter can be viewed
as manifestations of (9.2). The following is a common example of (9.2):

Example 9.3  (LINEAR MODEL) Consider the linear model of demand

where are i.i.d. random variables, independent also of the explanatory
variables y. Z is often referred to as the dependent variable and the vector y as the
independent variables. The distribution of Z in terms of (9.1) is then

where is the standard normal distribution.

9.2.1.3 Properties of Estimators
If the N observations, are considered independent

realizations of then the estimator based on these
observations is a function of N i.i.d. random variables, and is
therefore itself a random variable. What properties would we like this
(random) estimator to have?

Bias For one, it would be desirable if the expected value of the estimator
equaled the actual value of the parameters—that is, if

If this property holds, the estimator is said to be an unbiased estimator,
otherwise, it is a biased estimator. The estimator of the parameter,

is said to have a positive bias if its expected value exceeds and
a negative bias if its expected value is less than

If the estimator is unbiased only for large samples of data—that is, it
satisfies

then it is called an asymptotically unbiased estimator. All unbiased es-
timators are, of course, also asymptotically unbiased.

We drop the notation conditioning on and y, when it is obvious from the context.1
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Efficiency An estimator is said to an efficient estimator if it is
unbiased and the random variable has the smallest variance among
all unbiased estimators. Efficiency is desirable because it implies the
variability of the estimator is as low as possible given the available data.
The Cramer-Rao bound2 provides a lower bound on the variance of
any estimator, which can be used to prove an estimator is efficient. In
particular, if an estimator achieves the Cramer-Rao bound, then we are
guaranteed that it is efficient. An estimator can be inefficient for a finite
sample but asymptotically efficient if it achieves the Cramer-Rao bound
when the sample size is large.

Consistency An estimator is said to be consistent if for any

that is, if it converges in probability to the true value as the sample
size increases. Consistency assures us that with sufficiently large samples
of data, the value of can be estimated arbitrarily accurately.

Ideally, we would like our estimators to be unbiased, efficient, and
consistent, but this is not always possible. We revisit these properties
in Section 9.5.1.2 on specification errors.

9.2.2 Minimum Square Error (MSE) and
Regression Estimators

One class of estimators is based on the minimum mean-square error
(MSE) criterion—also referred to as regression estimators. MSE estima-
tors are most naturally suited to the case where the forecast quantity
has an additive noise term as in (9.2). Given a sequence of observa-
tions and associated vectors of explanatory variable values

the MSE estimate of the vector is the solution to

where is as defined in (9.2). The minimization problem (9.4)
can be solved using standard nonlinear optimization methods such as
conjugate-gradient or quasi-Newton. However, the problem is greatly
simplified if the function and the error terms have a specialized
form, as shown next.

Ordinary Least-Squares (OLS) and Linear-Regression Estima-
tors If the function in (9.1), the error terms in (9.2), and explana-

See DeGroot [151], pp. 420–430 for a discussion of the Cramer-Rao bound.2
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tory variables satisfy the assumptions listed in Table 9.1, the MSE
estimates are also known as the ordinary least-squares (OLS) estima-
tors—or linear-regression estimators. Specifically, suppose the observa-
tions are linear functions of M explanatory variables of the form,

Furthermore, suppose the explanatory variables are uncorrelated and
the error term are independent, normal random variables that have
means of zero and identical variances (homoscedasticity). Then the OLS
estimators are the values that solve

We can write equation (9.2) in matrix form as

where and The MSE
estimates for given N observations are then

assuming the matrix is invertible.

Example 9.4 Consider the following model of demand:

This model has one scalar parameter which is constant over time, and is equivalent
to having M = 1 and Y = (1,...,1) in (9.5). Assume    is normally distributed with
mean 0 and constant variance. Then if we have N observations,                   the MSE
estimate based on this data solves

Applying (9.6) and noting that and we obtain

which is simply the sample mean of the data.
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From (9.6) it can be seen that the OLS estimator is a linear func-
tion of the random observations Z, which makes computing the estimates
quite easy. In addition, the OLS estimators have several desirable prop-
erties: they are consistent, unbiased, and efficient under very general
conditions. For these reasons, the MSE/linear-regression estimator is
popular in practice.

Regression is widely used in price-based management for estimating
price sensitivity, market shares, and the effects of various marketing
variables (such as displays and promotions) on demand. Regression es-
timates are somewhat less common in quantity-based RM forecasting
application such as airline and hotel RM because in these applications it
is often difficult to obtain data on the exogenous explanatory variables
as an automated data feed. When regression is used in quantity-based
RM, typically the only explanatory variables in the model are the his-
torical demand data itself (the explanatory variables are past demand
observations). However, in such cases formal time-series models of the
type discussed in Section 9.3.2 are usually preferred.

When any of the assumptions of the OLS regression in Table 9.1
is violated, one has to resort to more advanced regression techniques
such as generalized least squares (GLS), seemingly unrelated regressions
(SUR), and two-stage and three-stage least squares (2SLS, 3SLS) (see
Greene [220]). A description of these methods is beyond the scope of
this chapter.

9.2.3 Maximum-Likelihood (ML) Estimators
While regression is based on the least-squares criterion, maximum-

likelihood (ML) estimators are based on finding the parameters that
maximize the “likelihood” of observing the sample data, where likeli-
hood is defined as the probability of the observations occurring. More
precisely, given a probability-density function of the process gener-
ating which is a function of a vector of parameters
and the observations of the explanatory variables, the likelihood of
observing value as the observation is given by The
likelihood of observing the N observations is then

The ML estimation problem is to find a that maximizes the likelihood
It is more convenient to maximize the log-likelihood, In because

this converts the product of functions in (9.8) to a sum of functions.
Since the log function is strictly increasing, maximizing the log-likelihood
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is equivalent to maximizing the likelihood. This gives the ML problem:

In special cases, this problem can be solved in closed form. Other-
wise, if the function is a differentiable function, gradient-based
optimization methods such as Newton’s method can be used to solve it
numerically.

ML estimators have good statistical properties under very general
conditions; they can be shown to be consistent, asymptotically normal,
and asymptotically efficient, achieving the Cramer-Rao lower bound on
the variance of estimators for large sample sizes.

Example 9.5  (ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION) Consider the
following model of demand from Example 9.4:

Recall that the model assumes that the scalar parameter is constant over time, and
is normally distributed with mean 0 and constant variance Suppose we have N

observations, Then the ML estimator solves

Taking the log of the objective function yields

Differentiating with respect to and setting the result to zero, one can show that the
ML estimator is

which is just the sample mean. Note despite the fact that the estimation criterion is
different, this estimator is the same as the MSE estimator of Example 9.4.

Example 9.6  (ESTIMATING THE PARAMETERS OF MULTINOMIAL-LOGIT MODEL) The
MNL discrete-choice model is described in Section 7.2.2.3. The data consists of a set
of N customers and their choices made from a finite set S of alternatives. Associated
with each alternative is a vector of explanatory variables (assume for simplicity
there are no customer-specific characteristics). The probability that a customer selects
alternative is then given by (assuming that all customers face the same choice-set
of products)
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where     is a vector of (unknown) parameters. Let          be the choice made by customer
The likelihood function is then

The maximum-likelihood estimate is then determined by solving

While this maximum-likelihood problem cannot be solved in closed form, it has
good computational properties. Namely, there are closed-form expressions for all first
and second partial derivatives of the log-likelihood function, and it is jointly concave
in most cases (McFadden [372]; Hausman and McFadden [244]). The ML estimator
has also proved to be robust in practice. (See Ben-Akiva and Lerman [48] for further
discussion and case examples.)

9.2.4 Method of Moments and Quantile
Estimators

While MSE and ML estimators are the most prevalent, several other
estimators are also used in practice. Two common ones are the method
of moments and quantile estimators.

In the method of moments, one equates moments of the theoretical
distribution to their equivalent empirical averages in the observed data.
This yields a system of equations that can be solved to estimate the
unknown parameters The following example illustrates the idea:

Example 9.7 (ESTIMATING THE PARAMETERS OF A NORMAL DISTRIBUTION) Sup-
pose we want to estimate the parameters of a normal distribution. The sample mean
and sample second moment are computed as follows:

Equating these to the theoretical mean and second moment yields the system of
equations

Solving for and gives the estimates and

Alternatively, we can use quantile estimates based on the empirical
distribution to estimate the parameters of a distribution. For example,
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we might estimate the mean of a normal distribution by noting that as
the normal distribution is symmetric, the mean and median are the
same. Hence, we can estimate the mean by computing the median of a
sequence of N observations. More generally, one can compute a number
of quantiles of a data set and equate these to the theoretical quantiles
of the parametric distribution. In general, if parameters need to
estimated, different quantiles are needed to produce equations in

unknowns (for a normal distribution, for example, one could equate
the 0.25 and 0.75 quantiles of the data to the theoretical values to get two
equations for the mean and variance). Quantile estimation techniques
are sometimes preferred, as they tend to be less sensitive to outlier data
than are MSE and ML estimators.

9.2.5 Endogeneity, Heterogeneity, and
Competition

Table 9.1 lists the standard problems associated with classical
regression—correlation of the error terms, collinearity, and so on—and
techniques for dealing with violations of the assumptions. Such prob-
lems and their corrective measures are well known and can be found in
many standard econometric books. In this section, we focus on a few
nonstandard estimation problems that are of particular importance for
RM applications—endogeneity, heterogeneity, and competition.

9.2.5.1 Endogeneity
The model (9.2) is said to suffer from endogeneity if the error term is

correlated with one of the explanatory variables in y. This is a common
problem in RM practice, both in aggregate-demand function estimation
and in disaggregate, discrete-choice model estimation.

For example, products may have some unobservable or unmeasurable
features—quality, style, reputation—and the selling firm typically prices
its products accordingly. So if there are two firms in the market with
similar products and one has higher nonquantifiable quality, we may
observe that the firm with the higher-quality product has both a larger
market share and a higher price. A naive estimation based on market
shares that ignores the unobserved quality characteristics would lead
to the odd conclusions that higher price leads to higher market share!
Such effects are widespread in price-elasticity estimation because we can
rarely observe all relevant product and firm characteristics and price is
usually correlated with many of these unobservable characteristics.

Econometricians call this problem endogeneity or simultaneity. The
technical definition is that the random-error term in (9.2) is correlated
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with one of the explanatory variables, or equivalently (in
the case of linear regression) these vectors are not orthogonal. So while

is supposed to represent all unobservable customer and product char-
acteristics that influence demand for a given set of explanatory variables
(Z|y), some of the explanatory variables y also contain information on
the unobservable attributes through their correlation with

Econometric techniques to correct endogeneity fall under a class of
methods called instrumental-variables (IV) techniques, attributed to
Reiersøl [438] and Geary [202]. Two-stage and three-stage least-squares
methods (2SLS and 3SLS) are some of the popular IV techniques. In-
strumental variables are exogenous variables that are correlated with an
explanatory variable but are uncorrelated with the error term If there
are such IVs, we can use them to “remove” the problematic correlation
between the independent variables y and

We illustrate the idea for the case of linear regression. In (9.5) suppose

However, suppose there exist M instrumental variables (we can use some
of the to construct this vector of IVs) for each observation so that
we have a N × M matrix V with the property that and

is nonsingular. Then the IV estimator is

where The IV estimator is a consistent estimator of
which can be shown by substituting in (9.12):

For a given set of N observations the IV estimator
can be calculated by the sample average

which converges by the weak law of large numbers to w.p.1 as

and w.p.1.
A regression with an IV transformation is called an IV regression

(see Greene [220] and Woolrdige [581] for details and examples of IV
methods) and a generalized IV regression if we use more than M IV
variables. There are no mechanically generated IVs that work for all
cases. It often requires considerable ingenuity to find good IVs and to
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argue that they can in fact serve to correct for endogeneity. This is what
makes the technique rather difficult to apply, requiring the skills of an
experienced econometrician.

In nonlinear problems, IV techniques become more difficult to apply.
For example, one often encounters endogeneity when estimating discrete-
choice demand models such as the MNL model from aggregate data
(prices correlated with unobservable product characteristics). However,
the problem is hard to correct because the aggregate demand is a nonlin-
ear function of the utilities of each product and the endogeneity is present
in the equation for the utilities. So using any IV technique for correcting
for endogeneity becomes computationally challenging, as pointed out by
Berry [53]. Berry [53] and Berry, Levinsohn, and Pakes [52] recommend
that for the case of discrete-choice models in an oligopoly setting, one
use measures of the firm’s costs and the attributes of the products of the
other firms as IVs. See also Besanko, Gupta, and Jain [63] for estimating
a logit model in the presence of endogeneity due to competition.

9.2.5.2 Heterogeneity
Customer heterogeneity is important to understand in RM. In Sec-

tion 7.2.3 we examined a few models of heterogeneity—namely, the finite-
mixture logit model and the random-coefficients discrete-choice model.
Here, we discuss how to estimate these models.

Estimation of the finite-mixture logit model is relatively straightfor-
ward. First, we must determine the number of segments. If there is no
a priori knowledge of the number, we iterate the estimation procedure,
increasing or decreasing the number of segments in each round, using
suitable model-selection criteria (see Section 9.5.1) to decide on the op-
timal number of segments. For a given number of segments L, we find
the parameters that maximize the log-likelihood function. For the finite-
mixture logit model of Section 7.2.3.1, this would amount to maximizing
the following likelihood function based on the purchase histories of N
customers:

where is the choice made by customer The only difficulty, from
an optimization point of view, is that taking logs on both sides does not
convert the right-hand side into a sum of terms, so the maximization is
somewhat more challenging than the estimation of standard logit models.

Estimation of the random-coefficient logit, likewise, uses maximum-
likelihood estimation and is more difficult in general than the standard
multinomial logit. Consider the model given in Section 7.2.3.2. Assum-
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ing the parameters follow a normal distribution, the likelihood function
that needs to be maximized is given by

where is the M-dimensional joint normal p.d.f. (with an identity covari-
ance matrix if the taste parameters are independent). If the distributions
of the parameters are modeled as a joint normal distribution with a
general covariance matrix structure, then evaluation of the integral is
quite difficult in practice. However, the extreme value distribution has
been integrated out in (9.13), and we do end up with a logit-like term
inside the integrals.

One of the problems dealing with unobservable heterogeneity in the
population is that we often have to assume a distribution of hetero-
geneity without having much evidence as to its specification. Many
times, a distribution is chosen for analytical or computational conve-
nience. Unfortunately, a situation can arise where two radically differ-
ent distributions of heterogeneity equally support the aggregate demand
observations. This was pointed out by Heckman and Singer [248], who
illustrated this overparameterization with the following example:

Example 9.8 Consider an aggregate-demand function based on a heterogeneity pa-
rameter The variance on the distribution of represents the degree of heterogeneity.
Let the demand for a particular value of be given by the distribution

and let be equal to a constant with probability 1 (essentiallysaying the population
is homogeneous). The aggregate-demand distribution then is

Consider another possible specification where

and the distribution of given by This also turns out to lead to an aggregate-
demand distribution given by So based only on aggregate demand data, it
is impossible to identify which specification is correct.

Therefore, one should proceed with caution when inferring a func-
tional form for unobserved heterogeneity from aggregate data.

Nonparametric methods avoid the problem of having to specify a dis-
tribution, and Jain, Vilcassim, and Chintagunta [267] follow this strat-
egy. Assume that the coefficients of the MNL model in (9.10) are
randomly drawn from a discrete multivariate probability distribution

That is, the customer is assumed to make his choice us-
ing whose components are drawn from G(·) is considered
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a discrete distribution with support vectors They estimate
the number of support vectors L, the location of the support vectors,
and the probability mass associated with the support vector from
observed data.

9.2.5.3 Competition
If one has access to information on prices and demand for an en-

tire market (such as MIDT data for airlines and scanner-panel data
sold by marketing research firms), it is possible to separately estimate
competitive- and own-price effects. A common strategy in such cases is
to assume a model of competition between the firms, derive the equilib-
rium conditions implied by this model, and then estimate the parameters
subject to these equilibrium conditions. We illustrate this approach with
an example:

Example 9.9 Assume a homogeneous population of customers who choose among
products according to the MNL choice rule. Then the theoretical share of product
is given as in Section 7.2.2.3,

where price is one of the explanatory variables in One way to estimate the
parameters is by equating the observed market share to the theoretical prediction
of equilibrium. It is convenient to take logs in doing this, which yields the following
system of equations relating market shares to choice behavior:

Next assume that prices are formed by a Bertrand-style competition in prices (see
Section 8.4.1.4). Let be the constant marginal cost of production for product
The profit function for product is given by

where N is the size of the population. Let be the coefficient of price in (9.14).
Differentiating (9.16) with respect to and setting it to zero, we get the first-order
equilibrium conditions,

The vector of parameters is then estimated by attempting to fit a solution to
(9.15) and (9.17) simultaneously. This can be done using, say, nonlinear least-squares
estimation.
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9.3 Forecasting Methods
We next turn to forecasting methods, which explicitly attempt to

“predict” the future values of a sequence of data. For RM, we are mostly
interested in forecasting demand (demand to come, as well as aggregate
demand for the resource and at various levels of aggregation), though in
many cases one also needs to forecast quantities such as market prices,
length of stay (in hotel RM), cancellation and no-show rates, and so
on. Indeed, the methods presented here, by and large, apply to a wide
variety of forecasting tasks, though for purposes of illustration we focus
on demand forecasting as our canonical application.

Forecasting is a vast topic, spanning a diverse range of fields includ-
ing statistics, computer science, engineering, and economics. Over the
years, a core set of forecasting methods have been developed and new
improvements continue despite the maturity of the field. Some of these
forecasting methods are based on rigorous mathematical and statistical
foundations, while others are largely heuristic in nature.

Yet despite this long history and vast body of research on forecast-
ing, there are few published reports that document the performance of
various forecasting methods in RM applications. Presentations on fore-
casting by practitioners at industry conferences often suffer from the
proprietary nature of the material, with key details either omitted or
disguised. The same can be said of most presentations by RM system
vendors. Nevertheless, one can still glean some useful insights into cur-
rent practice from these sources.

For one, most forecasting algorithms in RM practice are variations of
standard methods, and most are not particularly complicated or math-
ematically sophisticated. Also, many vendors use multiple algorithms,
which allow users the option of choosing one or more methods, or, alter-
natively, the system may combine the forecasts from the various methods
itself (see Section 9.3.11). Finally, the majority of forecasting effort in
practice is directed at data-related tasks—collection, preprocessing and
cleansing—rather than on forecasting methodology per se.

In terms of forecasting methods, the emphasis in RM systems is on
speed, simplicity, and robustness, as a large number of forecasts have to
be made and the time available for making them is limited. For example,
if an airline has 50,000 itineraries in 10 fare classes that it reforecasts 40
times during a sales period (typical numbers for a medium-size airline),
then they must forecast nearly 2 million demand quantities every day!
And this does not include forecasts of important auxiliary quantities
such as cancellation and no-show rates. It is little wonder, then, that
fast, simple methods are preferred in RM systems.

433
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Forecasting is normally performed overnight in a batch process and
then fed to the optimization modules, so the time window for completing
all control operations ranges from six to eight hours at most. Forecasting
model calibration (estimation), in turn, can only be done off line and
infrequently.

Robustness of the forecasts is also important in practice for these
same reasons. If a large number of forecasts are off widely and the
system starts generating exceptions, analysts may be overwhelmed by
the amount of manual intervention required. Hence, performance—in
terms of forecast accuracy under “normal” data conditions—while al-
ways a desirable criteria, has to be balanced against these “real world”
speed constraints and robustness considerations. We next provide an
overview of RM forecasting algorithms, starting with ad hoc and time-
series methods and progressing to Bayesian, state-space (Kalman filter),
and machine-learning (neural network) methods.

9.3.1 Ad-Hoc Forecasting Methods
The first-class of methods we look at are known as ad-hoc forecasting

methods because their reasoning is largely heuristic in nature. The term
ad hoc is somewhat misleading, however, as many of these methods turn
out to have good theoretical properties despite their heuristic origins.
They are also sometimes referred to as structural forecasting methods
because they proceed by assuming a compositional structure on the data,
breaking up and composing the series into hypothesized patterns (see
Figure 9.3). These include the following three types of components:

Level The typical or “average” value of the data, though in ad-hoc
methods the level is not defined as a statistical average in any formal
sense.

Trend A predictable increase or decrease in the data values over
time. Most often these are modeled as linear increases or decreases,
but other functions may be used.

Seasonality A periodic or repeating pattern in the data values over
time—for example, as produced by day-of-week or time-of-year ef-
fects.

Ad-hoc forecasting methods are intuitive, are simple to program, and
maintain and perform well in practice. For these reasons, they are preva-
lent in RM practice.

A common strategy of ad-hoc forecasting methods is to try to
“smooth” the data or average-out the noise components to estimate the
level, trend, and seasonality components in the data. These estimates of
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the smoothed series are then used to forecast future values, as we show
next.

9.3.1.1 M-Period Moving Average
Let represent the current time, and suppose we want to forecast

values at time in the future, called the ahead forecast.
Let denote the observed demand data, and
denote the forecasts. To forecast one period ahead, one simple approach
is to use the average of the past M observations. That is, the forecast
for period is given by

called the simple M-period moving-average forecast. M is called the span
of the moving average. The formula for the ahead forecast is
given by
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A different way of writing (9.18) is

which is computationally faster. If is less than M (that is, in the initial
stages of forecasting), one can use

The moving-average method is very simple and fast, but its motivation
is largely heuristic. The idea is simply that the most recent observations
serve as better predictors for the future than do older data. Therefore,
instead of taking the forecast as the average of all the data, we average
only the M most recent data observations.

The moving-average forecast responds more quickly to underlying
shifts in the demand process if the span M is small, but a small span
results in a more volatile forecast (one that is more sensitive to noise
in the data). In practice, M may range from 3 to 15, but the value
depends heavily on the data characteristics and the units used for the
time intervals.

When the data exhibits an upward or downward trend, the moving
average method will systematically under forecast or overforecast. To
handle such cases, variations such as double or triple moving average
have been developed, but for such data one of the exponential smoothing
methods given next is usually preferred.

9.3.1.2 Exponential Smoothing
Exponential-smoothing methods are among the most popular fore-

casting methods used in RM practice because they are simple and robust
and generally have good forecast accuracy. We look at three variations of
exponential smoothing. First, however, we formally define the following
component estimates of the forecast:

= the estimate of the level (average) for period
= the estimate of the trend for period and
= the estimate of the seasonality factor for period

See Figure 9.3 for an illustration of these components.

Simple Exponential Smoothing This simplest version of exponen-
tial smoothing is defined by a single parameter, called the
smoothing constant for the level.  The forecast for time-period is
given by

The ahead forecast is then simply
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The choice of is a design decision and is usually calibrated prior to
starting the forecasting system. Smaller values of smooth the fore-
casts more, leading to more stability, while larger values of make the
forecast more responsive to recent changes in level but also more sus-
ceptible to noise. In practice, is typically set between 0.05 and 0.3
in RM applications. In addition, more advanced adaptive variations of
the smoothing methods attempt to automatically optimize the value of

based on its observed performance.
Some motivation for the exponential smoothing method can be ob-

tained by expanding the recursive formula (9.19), substituting repeat-
edly for

Thus, we see the forecast for period is a weighted combination
of all previous observations with the weights “exponentially” decreasing
at a rate of High values of make the decrease rapid, and the
forecasts will be more responsive to recent observations, while low values
of will spread the weights over a longer period, and the forecasts will
react more slowly to changes in demand. Figure 9.4 illustrates the role
of the smoothing parameter on a sample time series of data.

The smoothing parameters play a similar (albeit more complicated)
role in the next two models.
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Exponential Smoothing with Linear Trend Let and
be two parameters representing the smoothing factors for

the underlying level and trend, respectively. Then the forecast for time-
period is given by the following formulas:

The ahead forecast is given by

Note is the estimate of the trend factor in each period and is smoothed
using

Exponential Smoothing with Trend and Seasonality (Holt-
Winter’s Method) This method is applicable to data series that ex-
hibit seasonal variations (for example, monthly, quarterly, or half-yearly
variations). Let and be three para-
meters used to control the smoothing on the underlying level, trend,
and seasonality, respectively. Let L represent the periodicity of the
seasonality—that is, the number of periods after which the seasons re-
peat. L depends on the length of the periods and the seasonality—for
instance, if we are constructing quarterly forecasts and the seasonality
is by quarter, L = 4, or if we are constructing monthly forecasts and the
seasonality is by month, L = 12. Then the forecast for time-period
is given by the formula,

and the three components of this forecast are updated as follows:

In (9.23c), is the new estimate of the seasonality factor for period
These factors are updated once each season and are smoothed with the
previous estimate of the seasonality factor, of L periods in the past, using

Equation (9.23a) “deseasonalizes” the data by replacing by
and then updates this deseasonalized data using the same procedure as
in exponential smoothing with a linear trend.
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The deseasonalized forecast is “reseasonalized” in (9.22) by multiply-
ing by the estimated seasonality factor to generate the forecast

More than one seasonal factor can be incorporated into the model
(such as both a day-of-week factor and a monthly factor) by simply keep-
ing two multiplicative seasonal factors and updating them as in (9.23a)
and (9.23c).

9.3.2 Time-Series Forecasting Methods
In contrast to ad-hoc forecasting methods, time-series methods are

based on well-specified classes of models that describe the underlying
time series of data. These models have relatively simple mathematical
structures, yet the model classes are rich enough to represent a wide
range of data characteristics. Since the models are well specified, it
is possible to derive “optimal” (MSE or ML) forecasting methods for
each one. In this way, the forecasting procedure is specifically tailored
to the underlying data-generation model. This formal representation of
the dynamics governing the time series and the rigorous development of
optimal forecasting methods is what distinguishes time-series methods.

The collection of random variables is called a time series if it
represents successive observations taken over time. The values are
assumed to be generated by a dynamic system, which may depend on
past values for and a series of random disturbances At time

we have observations of the past data values and would like
to forecast the future values of the time series—for example, forecasting
the value units in the future, or We might be interested in a
single point estimate, of this future value or an estimate of
the parameters of its distribution.

A time-series forecasting process proceeds in two basic steps. First,
we make a hypothesis about the specific type of process generating the
time series of data. Various model-identification techniques can be em-
ployed to help determine which models best fit the data. Once the
model is identified, we estimate its parameters. Finally, we apply the
corresponding optimal forecasting method specific to that model.

One distinct advantage of time-series methods is that they explicitly
model the correlations between successive data points and exploit any
dependence to make better forecasts. However, it is up to the RM sys-
tem designer to decide if such correlations exist (for example, whether
there are “runs” in the data, where high-demand observations are often
followed by other high-demand observations). Moreover, even when cor-
relation exists, the designer must decide if it is worth building in this
extra complexity to obtain better forecasts because these models require
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relatively large samples of data (usually at least 50 observations) to cal-
ibrate accurately.

In what follows, we present several time-series models and methods
for forecasting and updating estimates of their parameters. But first,
we introduce two important concepts central to time-series forecasting:
stationarity and autocorrelation.

9.3.2.1 Stationary Time Series
Stationarity is an important property of a time series that greatly

simplifies the forecasting task. Simply put, a time series is stationary
if its statistical properties do not change over time. More formally, if

and are two sets of random variables
from the series, then the series is said to be stationary if the joint distri-
bution of these two sets of variables is the same for all choices of time
and all pairs of values and

To understand why the stationarity assumption simplifies forecast-
ing, consider the problem of estimating the first two moments (means,
variances, and covariances) of a collection of N random variables from
a nonstationary time series. Nonstationarity means that these N ob-
servations were generated by a random process whose joint distribution
could be different at each time. Therefore, to estimate the first and sec-
ond moments, we need to estimate N expected values, N variances, and
N(N – 1)/2 covariances—a total of                    parameters. However,
if the series is stationary, all the expected values and variances will be the
same, as and have the same marginal distribution. Moreover,
there are only N – 1 distinct covariances because the joint distribution
of and is the same as that of and (for all and

), and hence their respective covariances are the same. Therefore, the
number of parameters we need to estimate if the series is stationary is
only 2 + (N – 1), a much more manageable task.  To simplify things even
further, one often makes further structural assumptions that guarantee
that a large number of the covariances are identically zero, making the
estimation problem even simpler.

How serious is the assumption of stationarity? At first glance, it seems
quite restrictive. In fact, many time series encountered in practice are
clearly nonstationary. For example, any time-series data with a trend
or seasonal pattern is not stationary (if the series shows an increasing
trend, the underlying distributions of the successive random variables
are certainly not identical). However, even if the time series itself is not
stationary, transformations of the series—such as the difference between
successive values—may be stationary. Indeed, time-series forecasting
methods for nonstationary data typically involve transforming the data
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to obtain related stationary series; forecasts based on this transformed
stationary series are then used construct a forecast for the original time
series.

9.3.2.2 Autocorrelation
As we show below, entire classes of stationary time-series methods

are specified through their covariance structure over time—that is, the
covariance of and for all The autocorrelation function (ACF)
and partial autocorrelation function (PACF) are the key tools to analyze
this covariance structure. They serve as “signatures”, as it were, of a
time-series model, and by comparing these signatures to the “sample”
signatures obtained from our data we can determine which models are
most appropriate.

Specifically, the autocovariance function is defined as the covari-
ance between and

The autocovariance function measures the dispersion or variance of the
process. However, two data series that are identical except for the scale
of measurement will have different autocovariance functions. Therefore,
it is better to deal with the autocorrelation function, defined as the
autocovariance function divided by the variance

which is scale invariant.
Given a data series                    the       sample autocovariance function

is given by

The sample autocorrelation function is given by

The partial autocorrelation function (PACF) is defined as

where is the sample mean
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and can be shown to be equal to the ratio of two determinants involv-
ing the autocorrelations (see Wei [560], pp.15–22). A sample PACF can
be defined analogous to the sample ACF, but it is considerably more
complex to compute. However, most statistical packages automatically
compute and plot the sample ACFs and PACFs, so the complexity of
the calculations is not a major concern. An example of a sample auto-
correlation function and a partial autocorrelation function is shown in
Figure 9.5.

9.3.3 Stationary Time-Series Models
We first consider stationary time-series models. To begin, define a

linear filter as a stochastic process that can be written as an infinite
weighted sum of random variables as follows:

(the minus sign on the is by convention), where and are constant
parameters and the random variables (called white-noise disturbances)
are assumed to be i.i.d. normally-distributed random variables with a
mean of 0 and standard deviation for all The stochastic process

is therefore a stationary process. We define to be the level of the
series, which is assumed to be constant. If the sequence is
finite or is infinite and convergent, then one can show that the process

is stationary and is the mean of the series
We can rewrite equation (9.24) to express      in terms of

and  as follows:

First, eliminate from (9.24), and write in terms of the
remaining variables and parameters,

Substitute (9.26) in (9.25) to obtain

Repeat this process to eliminate and so on to obtain an
equation where is expressed solely in terms of and
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where and are a new set of constants that depend on
and

The random variable can represent either a stationary or nonsta-
tionary process depending on the properties of the parameters (equiv-
alently, Three important stationary time-series models arise from
using (9.24) and (9.28):

Moving average process  This process requires that only
a finite number of be nonzero in (9.24). A order MA process
is given by

Autoregressive process  This process requires that only
a finite number of      be nonzero in (9.28):

Autoregressive moving average process                This
process is a combination of MA and AR process

An AR process is stationary if the roots of the polynomial
are greater than one. An MA process is called invertible if

all the roots of the polynomial are greater than
one. One can show that a finite-order stationary AR process can be
expressed as an infinite-order MA process, and conversely, a finite-order
invertible MA process can be written as an infinite-order AR process.
This relationship is useful because if a fitted AR model contains a large
number of parameters, it is possible that the corresponding MA model
will have fewer parameters, and vice versa. An ARMA model, being
a combination of an AR and an MA process can, in principle, reduce
the number of parameters even further. Every model has
what is called a pure MA representation—that is, it can be written as
the following infinite sum (see Wei [560], p.58 for a derivation):

In most practical applications of these models, and rarely ex-
ceed 2. The means and covariances for ARMA series with small values
of and are given in Table 9.2. Recall denotes the covariance
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Note that for stationary processes, the covari-
ances are independent of with representing the variance. In some
cases (as for AR(2)), the covariances do not have a closed-form formula
but can be derived as solutions to a set of equations (see Wei [560]
for derivations). The AR and MA processes have distinctive ACF and
PACFs. Figure 9.6 shows some typical theoretical ACF and PACFs.
The forms of these ACF and PACFs provide important clues as to
which model is most appropriate for the observed data. Such model-
identification issues are discussed in Section 9.3.5.

Once we decide that a set of time-series data is an or an
process, we can proceed to identify the parameters of the model by using
ML or MSE criteria. We can then use the models for forecasting in a
relatively straightforward manner, as shown in the following example.

Example 9.10  We illustrate the forecasting process on the following data set

Assume the data comes from an AR(2) process,

The forecasting process proceeds as follows:
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Parameter estimation  We first estimate the parameters and in (9.32) by
MSE estimation. This we do by solving the following optimization problem (note
that an AR(2) process requires at least two initial points, so we begin with data
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point 3):3

Let and denote the parameters that minimize the mean-square error
on these data. For an AR(2) process, (9.33) has a closed-form solution, but in
general numerical optimization is required to find the minimum. (Most statistical
software packages solve this optimization problem automatically.) The parameters
that minimize the mean-square error for the data set (9.10) turn out to be

and

Forecast For an AR(2) process, the one-step forecast depends on the two previous
observations. In general, the forecasts for are then
given by (assume

The results of the forecast are given in Table 9.3.

9.3.4 Nonstationary Time-Series Models
As mentioned, most time-series data encountered in practice are non-

stationary. In such cases, stationary time-series models may not fit the
data well and can produce poor forecasts. Techniques to deal with non-
stationary data try to make the data stationary by a suitable transfor-
mation, so that one can then apply a stationary time-series model to
the transformed data. The resulting stationary forecasts are then trans-
formed back to their original nonstationary form. Differencing successive
points in the time series is one such technique.

Time series that are stationary after successive differencing are called
homogenous nonstationary series. This means that after differencing
the series is adequately represented by an ARMA model of the form
(9.31). Other transformations, such as taking the logarithm of the series,
can make a series stationary if the relative or percentage changes are
stationary rather than the differences. For ease of exposition, however,
we focus only on differencing in this section.

Given a time series define a new time series as
is called the first-difference of the series. As we mentioned, there

is often good reason to suspect that even if is not stationary, might
be. A series with a linear trend, for instance, has constant differences and

3Solving the minimization problem (9.33) could be computationally quite intensive, espe-
cially if it has to be re-solved after each observation. A practical alternative is to estimate
parameters only periodically—say, after every 50 observations.
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its first-difference series would be stationary. If      still is not stationary,
we can construct a new series that is the differences of and examine
if it is stationary, and so on.

An autoregressive integrated moving-average process,
is one whose differenced series is an process. As for the
case of ARMA models, the parameters are usually small (less than
or equal to 2) in real-world forecasting models.

How do we decide how many differences to take or whether to differ-
ence at all? The ACF is helpful in this regard. If the series is nonsta-
tionary, the sample ACF shows high values for many periods, whereas
if the series is stationary, it damps down to zero quickly, often within
four or five periods. We can then difference the data and analyze the
resulting ACF to see if the results indicate stationarity. If not, then
more differencing may be needed.

The model is designed for homogeneous, nonstation-
ary time series. For example, when there is a trend (linear or nonlinear),
then successive differencing of ARIMA converts the series to a station-
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ary series. If, however, the data has a seasonal pattern in addition to
a trend, a more involved procedure is required. One option is to con-
sider the series as a product of two stationary series—one that represents
the seasonal component and another that represents a stationary time
series. We can then difference the seasonal component by the period
of seasonality, and the other component can be treated as a stationary
time series. However, model identification, parameter estimation, and
forecasting are considerably more complicated for this sort of model and
are beyond the scope of this chapter.

Finally, we note there is a heuristic relationship between ARIMA
process and the simple exponential smoothing method (9.3.1.2). To see
this, consider the following ARIMA(0,1,1) series:

and

Substituting successively for in the form (9.36) into (9.35),
we obtain

Note the similarity with the simple exponential smoothing
method (9.20), where Box and Jenkins [85] and Har-
vey [243] derive many connections like this between ad-hoc models and
ARIMA models.

9.3.5 Box-Jenkins Identification Process
Determining the model that best represents a given time series is more

of an art than a science. Often many different models must be tried
before one can narrow down the choice of a “best” model. However,
the Box-Jenkins method provides a framework to formalize the model-
selection process. It recommends an iterative methodology of choosing
the model, validating it, and modifying it to identify the best possible
time-series model. Here, we briefly review this methodology.

The first step in the process is identification. In this step, the sample
ACF and PACF functions are plotted to tentatively identify the most
likely candidate for a model. These correlograms are then compared
with the correlograms of a standard process such as or

for small values of and For instance, if the sample
ACF stops after spikes, an model would be appropriate; if the
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sample PACF stops after spikes, an model would be appropriate;
if neither looks like the right model but the correlograms still decline
exponentially toward zero, an ARMA model would be more suitable.

The next step is an estimation step in which the model parameters are
estimated from the data. Usually, these are least-squares or maximum-
likelihood estimates.

The final step is the diagnostic step, which verifies that the chosen
model and parameters indeed fit the data well. We do this by taking
the ACF of the residual series (actual data values subtracted from the
model prediction data) and performing various statistical tests (such
as the Box-Pierce test) to see if it represents white noise. If the model
performs poorly on these tests, the model is rejected, and another model
is tested.

Once the model has been selected, we can then use it to generate
forecasts as illustrated in Example 9.10. In practice, once a system is
operational, the model itself is rarely altered. In contrast, nonparamet-
ric or semiparametric methods, such as neural-network methods, adapt
the model automatically based on recently observed data. Indeed, the
substantial amount of manual work and statistical skills required to im-
plement the Box-Jenkins methodology are its main disadvantages in
practice, especially in a RM context where one needs a highly auto-
mated forecasting system with minimum manual intervention. As a
result, time-series methods have not found much favor in current RM
practice. But their performance, when sufficiently tuned and calibrated,
can be significantly better than the simpler ad-hoc forecasting methods
of Section 9.3.1. So even if they are not used operationally, time-series
methods play an important role as reference methods when evaluating
simpler forecasting methods.

9.3.6 Bayesian Forecasting Methods
Bayesian methods are a large class of forecasting methods that use

the Bayes formula to merge a prior belief about forecast values with
information obtained from observed data. The methods are especially
useful when there is no historical data, a common occurrence when new
products are introduced. For example, an airline may start flying on
a new route and have no historical demand information on the route.
Fashion apparel products often change every season, and hence demand
may be unrelated to the historical sales of past products. Similarly, a TV
broadcaster has no historical demand information on demand for a new
series. Nevertheless, in each of these cases forecasters may have some
subjective beliefs about demand, based on human judgment or alterna-
tive data sources (such as test marketing and focus groups). Bayesian
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methods provide a rigorous and systematic way of specifying such prior
beliefs and then updating them as demand data is observed. Hence,
they make it possible to combine subjective knowledge with information
obtained from data and observations.

9.3.6.1 Basic Bayesian Forecasting
As before, let be a sequence of i.i.d. random variables repre-

senting a data-generation process. We assume has a density function
that is a function of a single, unknown parameter For example,

might have a Poisson distribution, and the parameter might be the
mean Since is unknown, it too is assumed to be a random variable
with a probability density This density, called the prior, represents
our current belief about the value of the parameter     Roughly, if we are
confident about the value of then the density would be tightly
concentrated (have a low variance); conversely, if we are very unsure
about the value of then it would be more spread out (have a higher
variance). A prior with a large variance is called a diffuse prior.

When new data is observed, we may change our belief about the
parameter The procedure for formalizing this updating is given by
Bayes rule. Let represent our initial prior distribution
and denote our first observation. Then after observing demand, our
posterior distribution of is given by

The Bayes estimator of is then the expected value of based on the
posterior distribution (that is, once the information from the observed
demand had been incorporated):

The estimator has several nice theoretical properties. In particular,
one can show that it minimizes the variance of the forecast error.

The value is used in forecasting by setting Once
the next data value is observed, we repeat the procedure to get
and so on. Thus, represents our current (time belief about
(Note that it is a function of the history of observations,

What makes Bayes estimation practical is that for certain prior dis-
tributions of the parameters and certain corresponding sample dis-
tributions of the random variable Z, the posterior distributions of the
parameters in (9.37) have the same distributional form as the prior, and
their parameters are given by closed-form updating formulas. A pair of
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distributions that has this property is said to be a conjugate family of
prior distributions. We list below some well-known pairs of conjugate
families of prior distributions (see DeGroot [151] for derivations):

Beta-binomial are 0-1 random variables from a
Bernoulli distribution with and has a beta dis-
tribution with parameters After observing has
a beta distribution with parameters and

Poisson-gamma  have a Poisson distribution with
mean and has a Gamma distribution with parameters After

and variance

The following example illustrates the use of these formulas for fore-
casting:

Example 9.11  (BAYESIAN FORECASTING) Consider the following time series:

where is normally distributed with a mean of 0 and a known variance —that
is, the random variables are assumed to be from a normal distribution

Suppose our prior distribution on     is modeled as being normal with mean      and
variance The value can be thought of as representing our “best guess” of
and the value as representing our degree of confidence in this guess.

After an observation is made, our estimate on the distribution of is updated
using the update formulas in (9.39) and (9.40).

observing has a gamma distribution with parameter
and

Normal-normal                 have a normal distribution with a
known variance but an unknown mean and suppose
has a normal distribution with mean and variance The posterior
distribution of is a normal distribution with mean
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After the next observation is made, they are again updated as follows:

and so forth. After each observation the revised forecast of is given by

Notice the ease with which new forecasts can be computed in Exam-
ple 9.11. The method is also parsimonious with data: only the current
estimates need to be stored and updated; all the previous information is
contained in the current estimates. However, for distributions that are
not conjugate, the updating formulas get complicated, and the Bayesian
method loses its attractive properties.

9.3.6.2 Hierarchical and Empirical Bayes Methods
Hierarchical Bayes methods are an appealing way to combine sales

data from multiple locations or sources. For example, a manufacturer
might be forecasting the sales of its brand across multiple retail chains,
a retailer might combine the demand data for a product from multiple
stores locations, or an airline might combine data from multiple flights
serving a given market.

The method works as follows: Let be the number of sources and
represent the random variables of demand at each source. Let

denote N-vectors of observations of demand at each source
is assumed to be a vector of N i.i.d. realizations of the random variable

Let be the parameters of the distributions of
respectively, with densities We assume for simplicity that the
are scalars.

How should we combine these observations? The answer depends on
how the parameters are related. If the parameters are com-
pletely unrelated, we can estimate each independently. If they are all the
same, we can simply pool all the data together to forecast
a single number. However, neither assumption may be satisfactory in a
given practical forecasting situation. That is, the sources may be related
but not necessarily identical. Hierarchical Bayes methods address this
intermediate case. They posit the parameters as realizations
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of a common (across the sources) prior distribution of and use the
information from “all other” data to obtain a prior for the parameter of
each specific source, which is then updated in a Bayesian manner using
that source’s data.

Figure 9.7 shows the hierarchical Bayes model for forecasting First,
are assumed to be i.i.d. realizations of a density where

is a hyperparameter from a hyperprior density Both as well
as are unknown. Then we estimate in this framework using not
just    but also the other data                        Let
and Using the other data, we perform a Bayesian
update on the hyperparameter to obtain the posterior distribution of
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4

The integral term in (9.43) is the probability of observing  for
a given We can use this to obtain a prior density for using Bayes
rule:

From this prior density, we calculate the posterior density of     based
on the data set

where is the likelihood function of given We can interpret
as the information on obtained solely from while

is the “correction” based on the information from the other data
Notice that throughout, we do not need to estimate or know the value
of it is integrated out in (9.44). However, we do need to know the
form of the function      to calculate (9.44). This hyperprior density is
somewhat removed from the actual data and hence is difficult to interpret
or assign a priori.

One way of avoiding specifying the hyperprior density is to use
what is called an empirical Bayes approximation to The em-
pirical Bayes approximation proceeds as follows. Suppose we represent
the likelihood (with respect to given the other data as

4To avoid excessive notation, we do not write down the normalizing factor and just represent
the density as being proportional to the right-hand side. So the use of Bayes rule in
(9.43) should be read as

The density can easily be recovered by dividing by the integral. We do likewise for all
subsequent applications of Bayes rule in this section.
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and let denote the ML estimate

Then instead of using the exact density             of (9.44) in (9.45b), we
use the approximation          to obtain the MLE posterior density of

Of course, (9.46) should be easy to solve or else this approximation
will be difficult to implement. One can even substitute a MSE estimator
or a method-of-moments estimator (Sections 9.2.2 and 9.2.4) instead of
the ML estimate of (9.46) if these make the computations more tractable.
So one has to choose the densities of          and judiciously for com-
putational convenience. But in the end, the advantage of this method of
empirical approximation is that it does not require an estimate of

We illustrate the hierarchical Bayes model with a retail RM example:

Example 9.12 (SHRINKAGE ESTIMATION OF RETAIL PRICE AND PROMOTIONAL
ELASTICITIES ([75])) A manufacturer sells a product through multiple    chains
(collection of stores). Periodically the manufacturer offers promotions and wants to
gauge the effect of the promotions on sales. The model of sales during a promotional
campaign is the following:

where
= logarithm of sales in period
= relative price in period (regular price divided by

an average of competitive regular prices)
= deal discount in period (normal shelf price minus

actual divided by normal shelf price)
= feature advertising in period (proportion of

stores in chain using the ad)
= display in period (proportion of

stores in chain displaying the brand)
= 0-1 indicator variable, 1 if period is the final period

of a multi-week deal, and 0 otherwise
= maximum deal discount for competing brands in chain in period

The data consists of T periods of sales data from the    chains. Let represent the
log sales of chain-brand           at time        and                  the              covariate (explanatory variable
in (9.47), (M = 7)) value for period for chain The regression
models for the log sales for the    chains are given by
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where the are assumed to have a normal distribution with mean zero and a common
variance and to be independent. Let and
We assume is known,5 and let denote

Let , and the matrix whose elements are
Then the regression equation for store in matrix form is

The MSE estimates for are given by (same as (9.6))

However, estimating by chain reduces the size of the data sets and often leads to odd
predictions with wrong signs on the coefficients or similar calibration problems.

We can build instead a hierarchical model assuming that each parameter comes
from a prior normal distribution

are the hyperparameters with an unknown dis-
tribution generating the parameters Let

and
If we knew  and we had a prior       of the parameters,

then we could have estimated the mean of the posterior distribution of     by Bayes
theorem as (using a vector version of the formulas in Example 9.11)

where

The new updated mean of (9.48) is in a sense a convex combination of the prior mean
and the actual (unknown) mean The mean is “shrunk” toward the hyperparameter

by the shrinkage factor
The estimate (9.48) is unusable however as we do not know

(i.e., and ). If we had estimates of the hyperparameters from “other”
data however, we can use them instead in (9.48) for any given chain So the estimates
of would be a convex combination of a hyperprior estimate of from data other
than from chain and the data of chain This is the idea behind the hierarchical
Bayes method.

In practice, obtaining the ML estimates of from the other data may be too
difficult. But this does not prevent us from using any reasonable estimate that we
can obtain based on the other data. Blattberg and George [75] give a variety of
alternatives for the hyperparameter estimates for this regression problem. Also, here

5 For any given set of estimators of a good estimate of is

This is a straightforward regression problem if the     stores are estimated separately.



458 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

we have constrained the to have identical variances See [75] for alternative
constraints with different interpretations. Blattberg and George [75] also consider
weekly sales data for a national brand and show that hierarchical Bayes methods
improve predictive performance.

9.3.7 State-Space Models and Kalman Filtering
Like time-series methods, state-space methods assume the time series

is driven by an underlying dynamic system. The system is defined
by a “state” together with a system of equations for describing how
the state and observable outputs (say, the time-series data) evolve over
time as function of possibly random inputs. The future behavior of
the system can be completely described by the present state and future
inputs, a feature known as a Markovian representation of the system.
However, the current state most often is not directly observable and must
be estimated based on observed data. The following example illustrates
a simple case of such a system:

Example 9.13 Consider a series being generated by the following model:

where is the underlying mean of data Here the mean (a scalar) is the
state of the system, which we cannot observe directly. The mean evolves according
to the state equation (9.49b), which is a linear function of the past state and
a process noise term The observable output is described by the observation
equation (9.49b) and is equal to the mean plus a measurement noise term

For a time series generated by (9.49a)–(9.49b), a forecasting method might proceed
as follows: (i) keep a current estimate of the underlying state (ii) forecast

(iii) after observing the data at time update our current estimate of state
to and repeat. (Details of how this can be done are discussed below.)

One can view many forecasting models in a state-space framework.
For example, in simple exponential smoothing equation (9.19), the level
factor can be interpreted as the unobservable state, while Bayesian
forecasting methods can be viewed as an attempt to estimate an unob-
servable “state” (the unknown parameters of the distribution). More
generally, if we define the “state” at time as consisting of the com-
plete history of observations and actions up to time then this state
would contain all the information relevant for forecasting. Thus, at an
abstract level, all forecasting models can be cast in a state-space model
framework. However, such an abstract description is of little practi-
cal value because the dimension of the state increases without bound
over time. Hence, for the state-space approach to be useful, we need
a more compact (finite-dimensional) representation of the state, as in
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Example 9.13. In this section, we focus on the best known state-space
forecasting method: the Kalman filter.

9.3.7.1 The Kalman Filter Formulation
The Kalman filter is based on a finite-dimensional system of linear

state and observation equations and zero-centered Gaussian (normally
distributed) noise terms. Under these conditions, the Kalman filter pro-
vides an efficient algorithm for estimating the state and for forecasting.

Formally, let the dimensional real vector represent the state at
time The state is assumed to evolve according to a linear system
equation:

where is a of random variables, called the process noise,
and A is a known matrix of parameters. We assume is a
Gaussian (white-noise) process—a set of i.i.d. random variables from a
normal distribution N (0, Q), where Q is a known matrix called
the process-noise covariance matrix.

There is a   vector  of observations,6 which is related
to the state by the following observation equation:

where H is a known matrix of parameters, and is a
of i.i.d. random variables, called the measurement noise, that we assume
has a normal distribution N(0, R), with a known         measurement
noise covariance matrix R. While we assume the matrices A, H, Q,
and R are known, in practice they are usually estimated from data as
discussed later.7 To illustrate this formulation, we give an example of
the AR(2) model in state-space form:

Example 9.14  Consider the AR(2) process described in Section 9.3.2, where

6Note that the observation is a vector here, in contrast to the scalar observations of previous
sections. We also use z and y to represent the random variables generating z and y, instead of
Z and Y as in the rest of this chapter, to avoid confusion with our matrix notation convention.
7Here we have also assumed that the matrices A, H, Q, R are constant across time. However,
the theory and the Kalman filter forecasting equations hold even when this data changes over
time. The Gaussian distribution assumption on the error terms is also not strictly necessary,
although it is commonly assumed in most applications.



460 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

We can rewrite equation (9.51) as a system of state-space equations, as a combi-
nation of a state-evolution equation,

and as a measurement equation,

In a similar fashion, the general model can also be formu-
lated in a Kalman-filter framework (see Wei [560], p.385), as can many
of the other time-series models of Section 9.3.2 (see Harvey [243]).

In a forecasting context, the state can be viewed as the (unobservable)
parameters of the true underlying demand-generation process. Each ob-
servation gives additional information of the parameters, and this infor-
mation can be used to update our current estimate of the state via the
state-evolution equation. With the updated state, a forecast for period

can be made using the prediction equation for period sub-
stituting the state obtained for period The Kalman filter provides an
efficient recursive algorithm for performing these operations.

9.3.7.2 The Kalman Filter Forecasting Algorithm
We first state the Kalman filter forecasting algorithm, and then ex-

plain the intuition behind it and some of its formal properties.
The algorithm proceeds as follows. Let the subscript indexing

denote the value of the variable at time based on all the information
up to time (before the observation in period ). At each time we
keep an estimate of the underlying state that encapsulates all the
information gained from past observations. After time we get a new
observation and update our estimate of state to using and

(by (9.50)). We then make a forecast for time
with

Let and represent, respectively,
errors from the true state before and after the state estimates have been
updated. Let and represent,
respectively, the error covariance matrices. The algorithm is as follows:
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Initialization: Let time Assume initial values of (say I)
and the initial state

Forecasting step: At time project the error, state, and forecast:

Measurement updating step: After observing update

where the matrix is given by

Update the error covariance

The matrix       is known as the Kalman gain. The crucial step is (9.52),
which calculates the a posteriori estimate of the state after observ-
ing the measurement in period from the a priori estimate (be-
fore observing the measurement in period ). If the disturbances
are normal, the distribution of the initial state will be normal, and
the mean and variance of the a priori estimate of the state are given
by and The conjugate distribution of a normal distribu-
tion is again normal and after observing the measurement the a
posteriori distribution of is also normal with mean given
by (9.52). This mean-state vector also turns out to be the minimum
mean-square estimate of given all the information up to time

Even when the disturbances are not normal, the Kalman filter
equations can be shown to be the best linear estimator, in the sense of
minimizing the mean-square error among all linear updates of the form

that is, the Kalman gain is the matrix
K that minimizes

An attractive property of the Kalman filter is the recursive nature
of the algorithm. At each step, we need only to maintain the current
estimate of the state and the estimate of the covariance matrix. As new
observations come in, we can then easily update these two quantities.
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Moreover, updating these estimates by the Kalman filter equations is
computationally very efficient, which is one of the most appealing fea-
tures of the algorithm. The following is a simple example of the operation
of the Kalman filter:

Example 9.15  (FORECASTING USING THE KALMAN FILTER) Let the state evolution
equations for a 1-dimensional state be given by

and the measurement be given by the process

where and Then the state update equations of the Kalman
Filter are

and the measurement equations to update the state and measurement are

where is given by

Update the error covariance by

To start off the forecasting process, at we need to assign some values to
and Rather arbitrarily let’s set As with Bayesian methods, the

quantity  should reflect our degree of certainty about our estimate of the state
A value of would imply that we are completely sure of our initial estimate;
more often, we choose some value The precise value is not critical—the
Kalman filter algorithm is quite robust this way—but the more uncertain we are of
our estimate, the higher this value should be (something like                would generally
suffice for this case).

Notice the similarity between (9.53), which can be rewritten in terms
of and as

and the simple exponential smoothing formula (9.19), repeated here:
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Indeed, the Kalman gain can be considered as an adaptive smoothing
factor that changes over time based on the observed data. As
one can also show the Kalman gain converges to a constant matrix K,
which means, after many observations, the Kalman filter will converge to
the simple exponential smoothing formula (9.19). However, the Kalman
gains are in fact the “optimal” weighting factors, in the sense that for
linear state and measurement processes, they minimize the mean-square
error.
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9.3.7.3 Estimating the Matrices A, H, Q, and R
Lastly, we address the question of estimating the matrices A, H, Q,

and R. Although the Kalman filter equations are easy to apply if these
matrices are known, in practice it is highly unlikely that we know their
exact values. For instance, in the state-space formulation of the AR(2)
process (9.51), we do not know the components and of the matrix
A. However, these parameters can be estimated by maximum-likelihood
methods based on an initial set of observations (see Harvey [242] and
Harvey [243], p.91). The values used for Q and R will also affect the
behavior of the algorithm. If the values we choose for Q and R are
much higher than the true variance in the process and measurement
error terms, then the forecasts tend to be very reactive to noise, and if
they are much smaller than the actual variances, the forecasts are much
smoother (see Figure 9.8). Again, these variances can also be estimated
by maximum-likelihood methods.

9.3.8 Machine-Learning (Neural-Network)
Methods

All the forecasting methods we have discussed thus far follow the
same underlying strategy: posit a functional form for the relationship
between the observed data and various factors (such as noise terms, time,
past observations, and causal factors) and then estimate the parameters
of this function using historical data. In contrast, machine-learning—
or specifically, neural-network—methods do not make a functional as-
sumption a priori; rather, they use interactions in a network-processing
architecture to automatically identify the underlying function that best
describes the demand process. The methods are based on artificial in-
telligence approaches that mimic the way the human brain learns from
experience. In theory, with the appropriate architecture and training
procedure, neural networks are capable of approximating any nonlin-
ear functional form after a sufficient degree of “learning” on samples
generated by that function.

Neural networks have found wide applicability in pattern recognition,
classification, reconstruction, biology, computer game playing, and time
series forecasting. Business applications have been reported in market
analysis, bond rating, credit-risk evaluation, and financial series forecast-
ing. Some RM vendors and airlines have implemented neural-network
forecasting methods as well [496].

Neural-network forecasting encompasses a large class of architectures
and algorithms, and the literature is extensive. Here we only describe
the workings of a simple neural network with the most basic of training



Estimation and Forecasting 465

algorithms. However, this introduction should provide a good sense of
the overall approach.

9.3.8.1 An Overview of Neural Networks
A neural network consists of an underlying directed graph and a set

of additional quantities defined on the graph. In an important class of
neural networks, the nodes of the network are arranged in consecutive
layers, and the arcs are directed from one layer to the next, left to right
as shown in Figure 9.9. Such networks are called feed-forward networks
or perceptrons and form the most important class of neural networks used
for forecasting. We limit our discussion here to feed-forward networks.

The first layer is called the input layer and the last is called the out-
put layer, with the layers in the middle being the hidden layers. Most
networks in practice have at most one or two hidden layers. A network
with a single hidden layer has been shown to be able to approximate
most nonlinear functional forms [397]. The training data is “fed” to the
input layer, and the forecasts are “read” from the output layer. Typi-
cally, in demand-forecasting applications, each node in the input layer
corresponds to an explanatory variables (analogous to the in the
linear-regression equation (9.3)), and each node in the output layer cor-
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responds to a future forecast. For example, if we want to use the 20
most recent historical observations to make forecasts for the next three
periods, the network would have 20 input nodes (one for each histori-
cal observation) and three output nodes (one for each forecast), with a
certain number of hidden nodes in between.

More generally, a neural-network architecture is defined by a graph
where is a set of nodes and is a set of directed arcs.

The following quantities are defined on the network:

A state variable, associated with each node Typically, state
is binary (every node is either active (state 1) or inactive (state 0))
or it is continuous, usually taking on values between 0 and 1. The
state can change for each set of inputs or in an online forecasting
application after every new observation. Thus, states are said to
evolve over discrete units of time and we represent
the state of node at time (observation) as

A weight, associated with each directed arc

An activation threshold value associated with each node
Typically, the activation threshold value serves as a threshold for
making the node active or inactive. For example, if the sum of the
weights of incoming arcs exceeds then consider node active and
inactive otherwise.

An activation function (or transfer function), which determines the
state of node as a function of the states of other nodes with arcs
into (with arcs of the form the arc weights and the
activation threshold The activation
functions can be different for each layer (or even each node). Typi-
cally, the activation functions act on the sum of the weights of arcs
from active nodes coming into node in which case, the activation
threshold for can be represented as Acti-
vation functions serve to make the nodes active or inactive.

Some examples of transfer functions include the following:

A linear function, where

The Heavyside step function, which is a simple threshold value
comparison between and
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The logistic sigmoid functions (Figure 9.10), which are a class of
monotonic, differentiable functions with

and

An example of a logistic sigmoid function is the Fermi function:

The tanh function:8

The value of the transfer function is taken to be the state of the
node. The state is binary (0 or 1) for the Heavyside step function and
continuous for the linear function (from ) and the logistic
sigmoid functions (between 0 and 1).

9.3.8.2 Training and Forecasting
Calibration of a neural network is called training the network. A set

of training data is used to calibrate the weights and the values of the
threshold functions. Once these parameters are determined, the network
can be used for forecasting. Thus, the three main steps are defining the

8The tanh function can be shown to be equivalent to the Fermi function after a linear trans-
formation of the inputs and outputs (see Bishop [69], p.127). However, the tanh function has
been found to give faster training convergence and is generally preferred.
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network, training, and forecasting. We illustrate these steps on the
three-layer network of Figure 9.9.

Defining the Network The input is a set of I values of independent
variables associated with each observation, represented by I input nodes,
and the output is a forecast for K future periods, represented by K out-
put nodes. The inputs could consist of all variables that would influence
the demand. For instance, if the forecast is for demand in a particu-
lar market for an airline, the input variables, in addition to historical
demand in that market, could consist of variables such as schedule fre-
quency, capacity, time in market or economic indicators. Assume there
are J nodes in the hidden layer. We index arcs from the input layer to
the hidden layer as and arcs from the hidden layer to the output
layer as

We next need to define the transfer functions. We use the tanh func-
tion (9.55) as the activation function for the nodes of the hidden
layer and a linear function as the activation function for the
nodes of the input and output layers. These functions are defined by the
activation thresholds the arc weights and the parameter
of the tanh function.

Let represent the state of input node and the state of node
of the hidden layer, and the state of node of the output layer.

The inputs to the hidden layer are formed by a weighted combination of
values of the states of the input layer

and the state of the hidden node is therefore

The inputs to the output layer in turn are a weighted combination of
the states of the hidden layer and the activation thresholds of the output
nodes:

The state of the output node is then This completes the
definition of the network.

Training Once a network topology is chosen, we have to determine val-
ues for the arc weights and node activation thresholds. This training is,
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in all respects but terminology, equivalent to estimating the parameters
of any other forecasting model from historical data—except that we are
not working with a simple functional form for the demand generating
process but rather from a complicated network of interacting functions.

One of the first, and still quite popular, methods of training is the er-
ror back-propagation method. The method uses a squared error criterion
and prescribes an iterative procedure to update the weights to minimize
the squared error. Appendix 9.A gives an application of this algorithm
to the three-layer network of Figure 9.9.

Forecasting Once training is complete, we have a set of values for the
parameters of the network, and the parameters of the tanh
function. Since the state of the input nodes is equal to and
since we chose to be the linear function, the input state is simply the
input to node Again, the inputs to the hidden layer are a weighted
combination of values of the states of the input layer

so the state of the hidden node is computed as

The inputs to the output layer are again a weighted combination of the
states of the hidden layer and the activation thresholds of the output
nodes:

The final forecast is then given by state of the output nodes:

9.3.8.3 More Advanced Neural Networks
The network architecture and training algorithms described thus far

form the most basic neural-network methodology. But other variations
of this method are available. Even for the simple method presented here,
we have not delved into procedures to choose the number of hidden layers
or the number of nodes in each layer, or the best choice of the transfer
functions. For example, there are many procedures to automatically
prune or grow the network topology based on the observed data and the
network’s predictive performance.
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As far as training goes, we have described only one of the earliest and
the most basic of training algorithms. A significant amount of the neural
network literature is devoted to improving training, in terms of speeding
up the convergence or ensuring the convergence is to the right parameters
(global convergence), and avoiding overfitting (Section 9.5.1.4). The
interested reader should consult a textbook on neural networks before
deciding among these various options.

9.3.9 Pick-up Forecasting Methods
Pick-up forecasting methods exploit some unique characteristics of

reservation data in quantity-based RM, where the period between re-
peated service offerings is shorter than the period over which reserva-
tions are made (for example, an airline offers a daily flight between two
cities but accepts reservations for these flights up to 90 days prior to
departure). They are best viewed as a forecasting strategy—specifying
a method for disaggregating and aggregating reservations data—rather
than a class of fundamentally new forecasting algorithms.

As we mentioned in Section 9.1.3.4, reservations data has a “wedge-
shaped” form, in which one has a partial and evolving picture of demand
over time. Figure 9.11 shows this evolution of demand in matrix and
graphical form for resources sold on consecutive dates. Rather than re-
lying only on complete booking histories for forecasting, pick-up meth-
ods exploit both the complete and partial-bookings data to make better
forecasts. The main idea is to forecast incremental bookings (booking
obtained over short intervals of time prior to service) and then aggregate
these increments to obtain a forecast of total demand to come.

We illustrate this idea with the additive pick-up method. Suppose
for the data in Figure 9.11, we want to forecast for 13-June when we
have one day remaining. The historical observed bookings on the day of
departure are 8, 2, and 13 (for the service dates 12 June, 11 June and 10
June respectively). From this data {8, 2, 13}, we make an incremental
forecast for zero-day prior for 13 June (bookings expected on 13 June)
as, say, the mean value of 7.6. Similarly, for the forecast for 14 June,
we first construct two incremental forecasts, one for zero-day prior and
the other for one-day prior; sticking to our averaging method, this yields
incremental forecasts of 7.6 and 3.75, respectively. Then the forecast
of demand to come for 14 June is the sum of these two increments or
7.6 + 3.75 = 11.35, and so on, for the other dates in the future.

Formally, the ahead forecast of demand to come is given by
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where represents the incremental bookings forecast days prior to
the time of service. The forecasts are constructed using the
available historical incremental bookings. In principle, any
time-series method can be used to make these incremental forecasts.

In the multiplicative pick-up method, the forecast is performed on
data normalized as a fraction of current bookings. So if days prior
to the resource usage date there are 100 total bookings on hand and
on days prior 10 bookings were observed, then the incremental
increase is 10% or 0.1. The incremental bookings data is first converted
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to such fractions. In our example in Figure 9.11, to make a forecast
for 13 June, we convert the zero-day prior incremental bookings into
{8/14, 2/55, 13/54} (14, 55, and 54 are the total bookings on hand for
12 June, 11 June, and 10 June, respectively). Similarly, the one-day
prior fractions for 14 June are {2/22, 6/14, 4/55, 3/54}. We can take the
average of these fractions to obtain the forecast of the pick-up fraction
zero-day prior and one-day prior. This would be 0.284 for zero-day prior
and 0.162 for one-day prior, the average multiplicative “pick-up” over
current bookings. A forecast of demand to come for 14 June would be
0.284 × (33 + 0.162 × 33) + 0.162 × 33 = 16.23. This is higher than given
by the additive pick-up method, reflecting the underlying assumption of
the multiplicative method that future bookings are positively correlated
with current bookings. Other aggregation strategies and variations are
possible.

Again, the advantage of pick-up methods is that they use all the
available bookings information. Moreover, as partial bookings are recent
data, using this data can make the forecast more responsive to shifts in
demand. While the idea is simple and mostly heuristic, pick-up methods
are widely used in quantity-based RM and reported to perform well.

9.3.10 Other Methods
Several other methods of forecasting have been reported in RM. The

Delphi method is a formal procedure for extracting analyst and managers’
opinion on expected demand. It is used primarily in cases where there is
no historical information, where there is an unexpected demand shock,
or in some cases when RM is done manually. Fuzzy logic (Ting and
Tzeng [512]) and expert systems (Basgall [29]) have been proposed as the
basis for a second level of automation in RM forecasting. These systems
attempt to replicate the rules used by human analysts when monitoring
and overriding a RM system. Chaos-theoretical models for forecasting
market response have been proposed by Mulhern and Caprara [394], al-
though we are not aware of widespread use of these techniques in RM.
Another forecasting method proposed for RM is based on fitting histori-
cal booking to a set of cumulative booking curves. The current bookings
on hand are extrapolated using these curves to give the forecast. This
approach is similar in spirit to the multiplicative pick-up method dis-
cussed above.

9.3.11 Combining Forecast Methods
With computing power and storage becoming cheaper by the day, an

increasingly feasible forecasting strategy is to simultaneously use several
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forecasting methods and pick the “best” one. Of course, identifying
which method is best becomes another forecasting exercise in itself, and
there have been many proposals for such a model-picking strategy.

Moreover, it may not even be necessary to identify the best-performing
method: a linear combination of the forecasts with an appropriate set
of weights can turn out to be consistently superior to any one of the
constituent methods. This idea was proposed in an article by Bates
and Granger [30] and subsequently much investigated by forecasting
researchers. The intuition behind this result is that if the errors produced
by two forecasting methods are negatively correlated, then combining
them will reduce the overall forecast error.

So what is the best set of weights for such a linear combination? This
can be determined by finding weights that minimize the mean-squared
error of the combined forecast. Although it is difficult to obtain such
weights analytically, various heuristics have been proposed (see the Notes
and Sources of this chapter for references). The weights themselves can
adapt to fresh data and be updated from period to period.

We give one set of weights proposed by Bates and Granger [30] to
combine forecasts from two different models. Let be the mean-
squared error of model Let be the coefficient of correlation
between the errors in the forecasts of the two models. Then define the
weights as and where is given by:

Then the combined forecast is given by

Another combination scheme, this time using adaptive weights that
vary over time, is to set at time where

where is the mean squared error of model at time The
interested reader should consult Montgomery et al. [388], Gupta and
Winston [230], and Foster and Vohra [192] for other similar rules and
their properties.

9.4 Data Incompleteness and Unconstraining
We next look at forecasting from data that is either missing or par-

tially observable, a common situation in RM. Indeed, once a product is
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closed or capacity is sold out, we normally stop observing demand at
that point because most reservation systems record only actual book-
ings and not “attempted bookings.” Ignoring this censoring can cause a
significant bias in the forecasts, For instance, consider a product that
had been closed consistently in the past. Its observed demand would be
uniformly zero, and a forecast based on this data would forecast demand
as zero. However, if the optimization system had opened this product,
a positive demand might have been observed.

Incompleteness can occur in price-based RM when sales (and no-sales)
are not directly observable. This can make it difficult to obtain complete
information on customer purchase behavior. For example, if a customer
decides not to purchase because some alternative is not available in the
retail store, this information frequently goes unrecorded. Ignoring these
lost sales can lead to a bias in the forecasts if the data is not corrected
to account for the missing information.

Of course, companies that sell directly through their own call centers
or websites have the potential, in theory, to capture attempted reserva-
tions or no-purchase outcomes. However, in our experience few actually
do. And given the significant role that third-party reservations systems
and distribution channels play in many RM industries, the problem of
incomplete data remains an important one in RM forecasting.

Fortunately, there are several good methods available for correcting
for incomplete data, which we discuss here. Our description of these
methods is focused primarily on quantity-based RM because this is where
the incomplete-data problem is most acute. However, the techniques are
also used for estimating parameters in price-based RM, such as when
correcting for stock-outs or unobservable heterogeneity in retail RM.

9.4.1 Expectation-Maximization (EM) Method
The expectation-maximization (EM) method is the most widely used

method for correcting for constrained data in quantity-based RM. While
the algorithm can be described in generic form, it is easiest to understand
it by looking at specific examples. Because of its importance, we give
two such examples below, one for the independent fare class model and
the other for the discrete choice demand model.

9.4.1.1 Unconstraining in an Independent Booking Class
Model Using EM

Consider the independent-demand model of Section 2.2, in which the
demand for each product is assumed to be independent of the demand for
other products. Since most current quantity-based RM implementations
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assume independent demand for products, the method described here (or
variations of it) is very prevalent in practice.

Suppose we have M + N observations of bookings for a given prod-
uct, of which M observations are constrained because the
product was closed. We ignore the time-series aspect of the observations
and treat as an unordered set of observations generated
by an i.i.d. process. Specifically, if the time-series data has trend or sea-
sonality, the EM algorithm cannot be applied as shown below. (Com-
bining unconstraining with time-series forecasting is more complicated.
See McGill [376].) Our goal is to find the parameters of an underlying
demand distribution for these observations.

Assume that the underlying demand distribution is normal with mean
and standard deviation (The same unconstraining procedures can

be applied—albeit with different formulas—for many other distribution
as well.) We further assume that all the observations come from a com-
mon distribution and that the observations are constrained at random,
i.e., they appear randomly in the sample.9 Since we are treating the
observations as unordered, assume are constrained (right cen-
sored) at booking limits so that The
remaining N observations are unconstrained.

If the data were not constrained, then it would be easy to construct
the complete-data likelihood function. Namely,

with the complete-data log-likelihood function given by

The and that maximizes ln L(·) in (9.57) are given by the closed-form
solution

9In the RM context this assumption implies that there is no correlation among demand on
days when the product is sold out. Strictly speaking, this assumption rarely holds in RM
practice, but it is common to ignore this correlation possibility as the alternative statistical
methods are considerably more complicated.
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(See Example 9.5.) However, we do not know the true values of the
M constrained observations and therefore cannot use this
procedure directly.

The EM method uses this complete-data likelihood function in an
iterative algorithm with an alternating E-step and M-step (hence the
name). The E-step replaces the censored data by estimates of their
uncensored values using the current estimates of the mean and standard
deviation. The M-step then maximizes the complete-data log-likelihood
function based on this updated data to obtain new estimates of the
mean and standard deviation. The procedure is then repeated until
the parameter estimates converge. The advantage of this approach is
that it is much easier to estimate the complete-data likelihood than it
is to estimate the incomplete-data log-likelihood function. Hence, even
though we have to solve the complete-data likelihood problem many
times, the overall algorithm is still very efficient.

Specifically, for our normal distribution example, let repre-
sent the estimates of the parameters of the normal distribution after the

iteration of the algorithm. The steps of the EM algorithm for our
time series follow:

STEP 0 (Initialize): Initialize and to be and Good
candidates for these starting values are the sample mean and sample
standard deviation of all the unconstrained observations.

Let be a small number, to be used as a stopping criterion.

STEP 1 (E-step) : Calculate the expected value of the censored data
in the log-likelihood function assuming that they come from a normal
distribution X with parameters That is, for

calculate

and

The formulas for these conditional expectations are somewhat com-
plex but involve simply evaluating two integrals.
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Next, for each censored observation replace by
and by to form the complete-data log-likelihood function

as in (9.57). Note in this way we are simply replacing the con-
strained values in the log-likelihood function by their expected values
given the current estimates of the mean and standard deviation.

STEP 2 (M-step): Maximize with respect to and to ob-
tain yielding

and

STEP 3 (Convergence test): IF and
THEN STOP;

ELSE, GOTO STEP 1.

If the expected log-likelihood is continuous in the parameters ( and
in our case), a result by Wu [582] shows that if the sequence of EM

estimates converges, the limiting value will be a stationary point of the
incomplete log-likelihood function. Whether the sequence diverges—
or converges to something other than the global maximum—is more
difficult to determine and depends on the characteristics of the data set.
In practice, however, the EM method has proved to be very robust.

Once convergence has been achieved—say, in iteration K—the uncon-
strained values for can be taken as where
X is normally distributed with

Example 9.16 Consider the data set of bookings in Table 9.4 from 11 Jan to 29
Jan. The data on 13 Jan, 16 Jan and 18 Jan is constrained at the booking limit 17,
22, and 15 respectively. Assume the data comes from a normal distribution. Based
on the constrained data, the parameters of the normal distribution

Let C be the capacity constraint, D the demand,       the unconstrained value at
the iteration, and Then at the iteration, replace by
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given by the following formula for the normal distribution

So at the first iteration, replace 17 by 23.544, 22 by 25.416, and 15 by and 23.579.
At the second iteration, replace 23.544 by 24.216, and so on. As can be seen from
Table 9.4, the algorithm quickly converges (in this case; convergence is much slower
in general) to

9.4.1.2 Unconstraining in a Discrete-Choice Dynamic
Model Using EM

We next consider the problem of unconstraining under the dynamic
discrete-choice model of Section 2.6.2. Recall that in this model there is
an arrival probability in each period and consumers select among the
available classes according to a discrete-choice model. The RM control
problem is then to decide which products to make available at each
point in time. We consider here a multinomial-logit model similar to
Example 9.6, where the probability that an arriving customer purchases
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alternative from a set S is given by

where is a vector of attributes of alternative and is a vector of
parameters. The no-purchase probability is

The difficulty here is estimating the parameters and from purchase
data. Specifically, if we have only purchase data, it is impossible to dis-
tinguish a period without an arrival, from a period in which there was
an arrival but the arriving customer did not purchase. With this incom-
pleteness in the data, the complete-data maximum-likelihood estimation
procedure of Example 9.6 cannot be used.

However, we can again apply the EM algorithm to correct for the
missing data. The broad strategy is the same as the one for the normal
distribution case in Section 9.4.1: start with arbitrary initial estimates
of the parameters and the arrival rate Then use these estimates to
compute the conditional expected value of (the expectation
step). Maximize the resulting expected log-likelihood function to gener-
ate new estimates and (the maximization step), and repeat till the
procedure converges.

Suppose there are T periods. Let P denote the set of periods in which
customers purchase and denote period in which there are no purchase
transactions. Let if there is an arrival in period and
if there is no arrival. Let denote the choice made by an arrival in
period We can then write the complete log-likelihood function as

The unknown data are the values in the second sum. How-
ever, given estimates and we can determine their expected values
(denoted ) easily via Bayes rule:
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where

is the no-purchase probability for an arrival in period given
Substituting into (9.58) we obtain the expected log-likelihood

As in the case of the complete log-likelihood function, this function is
separable in and Maximizing with respect to we obtain the
updated estimate

This is intuitive; our estimate of lambda is the number of observed
arrivals plus the estimated number of arrivals from unobservable
periods divided by the total number of periods
We can then maximize the first two sums in (9.60) to obtain the updated
estimate Note that this expression is of the same functional form as
the complete data case (9.11). The entire procedure is then repeated.

Summarizing the algorithm:

STEP 0 (Initialize): and

STEP 1 (E-step): For use the current estimates and
to compute from (9.59).
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STEP 2 (M-step): Compute using (9.61).
Compute by solving

STEP 3 (Convergence test): IF
THEN STOP;
ELSE AND GOTO STEP 1.

One interesting fact is that there can be multiple pairs that
produce the same probabilities of sales. In this case, the EM and logit
estimates will find only one such pair. To take a trivial case, suppose
there is only fare product and that and are scalars. The
probability that we observe a sale if this fare product is open is then

It is clear that there are a continuum of values that will produce the
same value However, the maximum-likelihood estimate will identify
only one such pair. This difficulty is not a fault of the EM or logit method
per se; it is a reflection of the fact that—as in this simple example—
there may be more than one model that produces the same purchase
probabilities. In such cases, it is simply not possible to uniquely identify
the model from observed data; there is, in effect, a degree of freedom
that we cannot resolve.

9.4.2 Gibbs Sampling
While the EM algorithm is the most popular and widely used method

for unconstraining in RM applications, there are alternative statistical
methods to deal with constrained data. We briefly describe one tech-
nique here, called Gibbs sampling, which is part of a broader set of meth-
ods called Markov-chain Monte Carlo (MCMC) methods. Although not
widely used in forecasting for quantity-based RM, they have found ap-
plication in price-based RM (Allenby and Rossi [10], Allenby, Arora, and
Ginter [8]), econometrics (Chib and Greenberg [115]), and missing-data
problems (Schafer [456]).

MCMC methods simulate a (typically intractable) target distribution
of a (multidimensional) random variable Z by repeatedly simulating
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a sequence where each element in the sequence de-
pends on the previously generated element, and the limiting distribution
of as is the target distribution By generating enough
of these sequences, we can reconstruct the entire distribution

We first describe the Gibbs sampling method in general and then
apply it to the censored normal example in Section 9.4.1.1. Let a random
vector Z be partitioned into J subvectors

Let be the joint distribution of Z —-that is, the target distribu-
tion. The Gibbs algorithm is applicable whenever is unknown, in-
tractable, or difficult to sample from, but all the distributions
for is the vector X but without the block) have
known distributions that are easy to sample from.

Let be the generated sample at the
iteration.

Gibbs algorithm: Repeat the following steps till convergence (the cri-
teria for which are discussed later) :

Generate from

Generate from

Generate from

The stationary distribution of the sequence under rela-
tively mild conditions, can be shown to converge to the joint distribution

The use of Gibbs sampling for parameter estimation usually proceeds
in a Bayesian framework, in which we assume a prior distribution on the
parameters, and—from a practical point of view—choose a conjugate
family of distributions for the parameters.

To illustrate, let’s see how to apply Gibbs sampling method to esti-
mate the unconstrained mean and variance of a sample from a censored
normal distribution with unknown mean and standard deviation,

Assume as in the previous section that we have a sequence of M +
N independent observations where the first M observations are
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constrained at Our problem is to estimate and
It is convenient to assume that ( given ) has a “prior” normal
distribution and a “prior” inverted chi-square distribution,10 denoted
by This particular choice of distributions ensures the posterior
distributions of and are normal and inverted chi-square again.

The vector Z is then assumed to consist of two blocks—the first, of
the unknown parameters and the second, the vector of censored
observations The Gibbs algorithm begins with initial val-
ues for these two subvectors. For instance, as we did in the case of the
EM application, take initially equal to the sample mean and stan-
dard deviation of and set the vector equal
to the vector of censored values

At the step, generate

as M independent draws.
Next generate new values for

from a normal and inverted chi-square distribution, respectively, as fol-
lows:

where and are the sample mean and standard deviation of the M
generated values and the N unconstrained values:

This procedure is repeated until the distributions of
reach stationarity. However, testing for stationarity of a distribution can
be problematic (Section 9.3.2.1), so in practice a number of heuristic
termination criteria are used [456]. The resulting expected value of
and can then be used as our parameter estimates.

9.4.3 Kaplan-Meir Product-Limit Estimator
The Kaplan-Meir product-limit (PL) estimator ([289]) is another ap-

proach to censored-data estimation. Its origins lie in survival analysis
(with continuous distributions), but here we present it in terms of cen-
sored demand observations. It is a nonparametric method, the output of

10A random variable Y has an inverted chi-square distribution if has a chi-square dis-
tribution.
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which is an estimate of the complete distribution (as in Gibbs sampling)
rather than the parameters of an assumed distribution.

As before, assume we have M+N observations with the
first M being constrained (right-censored) at the values So
the observations are of the form where is the booking-
limit (called the limits of observation; the event is called a loss).
As earlier, is considered independent of The survival function of

is defined as and an estimate of it is equivalent to
an estimate of the distribution of Z.

The PL estimate of the survival function is then given as follows.
List and label the M + N observations in order of increasing magnitude,
so that For a particular value let

That is, is the set of indices in the
ordered list that are not constrained by the booking limits and have
values less than Then

where each term above is an estimate of the conditional probability that
the demand exceeds given that it exceeds The main idea behind
Kaplan-Meir estimate is best explained via a simple example:

Example 9.17 Suppose that we have four observations with bookings
{5, 10*, 11, 18}, where the superscript * signifies a constrained observation. Suppose
we are interested in the probability that If we ignore the constrained
observation (that is, base our estimate on the unconstrained reduced sample), we get
an estimate of 1/3 (one of the three unconstrained values exceeds 15).

However, we can also view as equal to
Then we estimate (based on the full sample) and

(based on the sample of last two observations), and we obtain
So the estimate of helps in obtaining a better estimate of

Kaplan and Meier show that the estimator in (9.62) gives the dis-
tribution that maximizes the likelihood of the observations. The curve
given by (9.62) is remarkably easy to compute and makes no parametric
assumptions. However, it can be inefficient (Miller [384]) and difficult
to compare by eye (Efron [173]), and it is also difficult to compute con-
fidence intervals for a Kaplan-Meier estimator.

9.4.4 Plotting Procedures
A hybrid parametric/nonparametric approach to censored data is

based on simply fitting a parametric distribution to an nonparametric
survivor function estimate such as derived using the Kaplan-Meir
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estimator. Such methods are called plotting procedures, because they
correspond to plotting an empirical distribution and then inferring pa-
rameters from this plotted distribution.

To take a simple case, if the distribution is assumed to be exponential,
so that then we have that

Hence, if we plot the empirical function it should roughly be
linear, with slope equal to One could estimate this slope via linear
regression, for example. In the case of a normal distribution with mean

and standard deviation the distribution is

where is the standard normal distribution. Hence,

where is the inverse of the standard normal distribution. There-
fore, by plotting we should expect to see roughly a straight
line with slope and intercept Again, values for the slope and
intercept can be determined using linear regression.

While somewhat less rigorous in a strict statistical sense than other
censored-data methods, plotting procedures can be attractive in practice
because they are simple and intuitive.

9.4.5 Projection-Detruncation Method
The projection- detruncation method is similar in spirit to the EM al-

gorithm. It has been used in the PODS simulations for quantity-based
RM and its origin is credited to Hopperstad ([256, 42, 587]).

The variation over the EM method of Section 9.4.1.1 is that in the
E-step of the algorithm, instead of replacing the constrained values

by an estimate of the conditional mean

it replaces the values by the solution of the following equation

where is a fixed constant throughout the algorithm. While there is no
formal theoretical justification of (9.63) or a proof of convergence, the
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heuristic interpretation is as follows. Note that (9.63) can be written

So corresponds to selecting a fixed fractile of the conditional
distribution given the current parameter estimates For
example, selecting would correspond to estimating as
the median of the conditional distribution, whereas the EM method uses
the mean of the conditional distribution. Hence, by using a small
value the constrained observations are unconstrained more aggressively
than may be the case in the EM method. Whether this leads to more
accurate estimation of the mean or a faster convergence than the EM
algorithm is not known, however. Zeni [587] gives an example comparing
the estimates of the two methods for             and the estimate of the
mean of the projection-detruncation method is nearly 10 percent higher
than that given by the EM algorithm, though one can arguably attribute
this to the choice of

9.5 Error Tracking and System Control
As mentioned, all forecasts are subject to some degree of error. Hence,

understanding and responding correctly to forecast errors are important
tasks in practice. Here we review the main methods for error tracking
and system control.

A forecaster needs to consider several types of errors. The differ-
ence between the observed data and a model fit to this data is called
the estimation error. Such error could be due to many factors: nat-
ural randomness in the demand process, unobservable characteristics of
the products or demand, mispecifications, unrealistic model assumptions
such as independence of the variables or error terms. We group all such
errors—errors in the estimation of the parameters of the model or the
specification of the model—as estimation errors.

Forecasting error, on the other hand, is the difference between a
model’s predictions for a future observation and the subsequent observa-
tion. The difference between forecast and estimation errors is a matter
of timing. Large estimation errors might compel us to refine the model
or “fix” it in some way now because we are aware of the errors. Fore-
casting errors, on the other hand, are unknown at the time of the model
specification and are realized only over time. There is also a dynamic,
online aspect to forecasting error and system control that is distinct from
the one-shot nature of estimation.

It is natural to suppose that a model that fits historical data well
that, say has low estimation errors, will also generalize well and give
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low forecast errors. This, however, is not the case. As we show in
Section 9.5.1.4, it is not uncommon to fit a model to give near-zero esti-
mation errors based on observed data, but then find that it has atrocious
predictive power. Indeed, forecasting can be said to be the art of under-
standing estimation errors (their sources and reasons) and then selecting
and training a model properly for optimum prediction power.

9.5.1 Estimation Errors
We first look at issues involved in analyzing estimation errors—in par-

ticular, bias, specification error, model-selection criteria, and overfitting.

9.5.1.1 Bias Detection and Correction
Bias in the parameter estimates of a model is called estimation bias.

This could arise because of the lack of a good estimator, incomplete data,
or nonconvergence of the estimation procedures. A bias in the parameter
estimates of a model leads to a bias in the forecasts, and in general, it is
desirable to eliminate it. If the cause of the bias were known, we would,
of course, fix the bias by eliminating the cause, but this is not always
possible—for lack of development time, investigation time, or data, and
so on. If this is the case, a simple and general method for correcting
for parameter bias is the so-called jackknife estimator (Quenouille [431];
Tukey [519]), which we describe next.

Suppose is a parameter and an estimator of the parameter based
on an i.i.d. sample Suppose that is a biased estimator of
the following form

That is, a order 1/N term and a second-order error term. The jackknife
estimator is calculated as follows. Let be the estimator applied to
the sample with the observation removed. Define

Define the (first-order) jackknife estimator as

which has the rather nice property that

Higher-order jackknife estimators can be defined that eliminate
higher-order biases. Besides bias correction, the jackknife is a valuable
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tool for interval estimation and has connections to bootstrap methods
(Miller [385]; Davison and Hinkley [148]).

While bias is usually undesirable, biased estimators may occasionally
be beneficial if they lead to lower variance (more efficient) estimates. To
give an example, if some of the explanatory variables in a linear regres-
sion are correlated (multicollinearity), the coefficients of the regression
will have a high variance. A method for reducing this variance is ridge
regression, which minimizes an objective consisting of the sum of the
variance of the parameter estimates and the bias squared, so a small
amount of bias is deliberately accepted (Judge et al. [273]).

9.5.1.2 Specification Errors
Specification errors are errors resulting from flawed model assump-

tions; that is, errors arising from a model that does not reflect the un-
derlying data-generating process. In short, how can we be certain that
the function used (9.2) is indeed the “right” function to use, both ex-
plaining observed values of Z as well as providing good predictive power
for future observations? Managerial judgment, visual inspection, data
analysis, and statistical tests all play a role in answering this question.

Specification tests are designed to test whether a given model and
its corresponding assumptions are correct. Failure to pass such a test
could mean one of the following: the functional form is inadequate to
represent the data-generating process; the functional form is correct,
but the wrong set of independent variables have been used in the model;
both the functional form and variable choice are correct, but the error
term distribution is misspecified; or assumptions on the error term of the
model (such as homoscedasticity or independence of errors) are violated.

There are several tests to check for misspecification (see also Sec-
tion 9.2.2). The simplest ones are graphical, such as plotting values
of the empirical distribution against the fitted distribution to look for a
straight-line relationship, or Q-Q plots, in which the quantiles of the the-
oretical distribution are plotted on the and the ordered fractions
of the observed values on the (a good fit is when all the values are
along the diagonal). Testing an empirical distribution against a given
theoretical distribution can be done using statistical procedures such as
the Kolmogorov-Smirnov test. We refer the reader to DeGroot [151],
pp. 554–559 for details on such tests.

Coefficient of Determination for Regressions The statistic most
widely used in regressions to measure goodness of fit is the coefficient of
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determination defined as follows for N observations:

where are the observations, is the estimate for observation based
on the estimated parameters, and   is the mean of N observations.
The value varies between 0 and 1 and signifies the percentage of the
total variation in the dependent observations explained by the regression
relationship. Thus, a high value of is desirable. Most commercial
statistical programs (SAS, SPSS, R, S, IMSL, MINITAB, Statistica, and
so on) compute this statistic automatically.

However, the choice of functional form is important, and one should
not rely on quantitative measures alone. A forecaster’s business intuition
about the relationships and causal variables ought to play as big a role
as formal statistical tests. A good value or a good visual fit does not
imply a regression has good explanatory power, as we discuss below in
Section 9.5.1.4 on overfitting.

The statistics of regression is concerned with many more issues than
just estimating parameters and calculating values. Statistical tests
exist for determining which of the independent variables is redundant,
their degree of importance in determining the independent variable, their
goodness of fit to the functional form, the appropriateness of the func-
tional form and the assumptions on the errors, and so forth. For exam-
ple, if the parameter estimates are assumed to be normal, then a
can be used to determine if the estimate is within a given interval about
the true parameter value with a certain level of confidence. Similarly,
a F-test can be used to test if some of the parameters are effectively
redundant (values close to zero) and can be eliminated. The details
of such tests are beyond the scope of this chapter, but these tests are
standard and described in most statistics or econometrics texts (Kvanli
et al. [318]; Judge et al. [273]; Draper and Smith [161]; Guttman [231];
Neter and Wasserman [403]).

Tests Against an Alternate Specification One form of a specifica-
tion test is to test a null hypothesis that a given specification is correct
against an alternate (usually more general) specification hypothesis. De-
pending on the type of null hypothesis, there are three classical specifi-
cation tests one can use: likelihood ratio (LR), Wald, and the Lagrange
multiplier (LM) tests. We describe only the LR test here.

Let denote the vector of model parameters. Let the null hypothesis
be that and the alternate hypothesis be that where

typically Then the likelihood of the observed data is as defined
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in (9.8). The likelihood ratio is

If this ratio is small, the null hypothesis is rejected. That is, there is a
significant loss of likelihood by restricting the parameter set to One
attractive feature of the likelihood ratio is that the statistic

is asymptotically distributed, and this fact can be used for hypothesis
testing.

Tests for Misspecification In contrast to the tests in the previous
section, a test for misspecification does not specify a single alternate hy-
pothesis. Instead, the null hypothesis is that the specification is correct
and the alternate hypothesis is that there is a misspecification. Nat-
urally, this is appealing as we are testing against a large number of
alternative specifications using a single test. We describe next, infor-
mally, a general misspecification test strategy due to Hausman (Haus-
man [245]; also attributed to Durbin [169] and Wu [583]). We illustrate
it by applying it to testing the IIA property in a discrete-choice model
(Section 7.2.2.3).

To describe the idea behind the Hausman test, consider a specifica-
tion test as in the previous section. The null hypothesis is that a
given specification is true; the alternate hypothesis is that another
specification is true. Let be a consistent and asymptotically efficient
estimator achieving the Cramer-Rao bound on the variance of the para-
meters (Section 9.2.1.3) of the specification under (In most cases,
there would exist such an estimator if the null hypothesis were true;
for instance, the maximum-likelihood estimators are consistent and as-
ymptotically efficient [220] under some mild regularity conditions.) If
instead were true, then will be biased and inconsistent under

(provided and are sufficiently different and assuming that the
specification of uses the same vector of parameters as that of
Let be some other estimator for the specification of
but asymptotically inefficient under but consistent under also.
If such estimators exist, then one can construct a test statistic out of
the difference as this difference should be approximately
centered at zero.

Hence, to test for misspecification when there is no alternate specifi-
cation, one can proceed by choosing two distinct estimators for the null
hypothesis specification—one efficient and one not efficient but more ro-
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bust (consistent even under a mispecification) than the first one. Then,
if the model is correctly specified, the difference between the estimators
will very likely have a mean away from zero. To apply the statistic,
the variance of has to be calculated, which fortunately turns
out to be equal to the difference of the variances of and The
test statistic used is which can be shown to have an asymp-
totically distribution (Hausman [245]; MacKinnon [352]). With no
misspecification, will tend to 0 w.p.1.

This specification test strategy, called the Hausman-type test, is quite
general and has found many applications in econometrics. We illustrate
the test by an example relevant to RM and price-response estimation.

Example 9.18 (HAUSMAN-McFADDEN SPECIFICATION TEST FOR THE MNL
DISCRETE-CHOICE MODEL ([244])) Given a set of observations of choices among
alternatives made by a population of N individuals, we would like to know if the
MNL model is the correct specification for the choice process. Assume that the no-
purchase choices are also observed.

Recall that the MNL model is characterized by the IIA property (Section 7.2.2.3):
the ratio of the probabilities of choosing any two alternatives is independent of the
attributes or the availability of a third alternative. Let be the set of
alternatives, the probability of choosing alternative i is given by (7.6)

where is the M-vector of attributes and relevant characteristics of the decision
maker for alternative and is a M-vector of parameters to be
estimated (assumed to be jointly normal with a covariance matrix

If S a subset of the alternatives, then if the IIA property holds, for

where

If the IIA property fails to hold, there has to be a set 5 where (9.67) fails to hold.
So if we restrict our population to customers who purchased only in S, we obtain an

Note that there may be some elements of the M-vector of parameters that may not
be identifiable from data restricted to purchases in S (for instance, alternative-specific
variables where the alternatives are not in S). If such is the case, we have to restrict
ourselves to a subvector corresponding to explanatory variables that vary within S,
but for simplicity, assume that this subvector coincides with the full M-vector of
explanatory variables.

The Hausmann specification test is based on the difference If
the IIA property holds, the two estimates and should coincide, and will

estimate based only on this data, with its covariance matrix estimated by
be the corresponding estimates for the full choice set.Let
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be a consistent estimator of 0. Then if is the variance-covariance matrix of
the test statistic

is asymptotically distributed with degrees of freedom given by the rank of
The null hypothesis can then be accepted or rejected with a specified degree of

confidence. In principle, this has to be tested for all possible subsets S of Also,
there is no guarantee that the variance-covariance matrix is invertible. Haus-
mann and McFadden report that the test is not very powerful unless deviations from
MNL are substantial.

9.5.1.3 Model Selection
Model selection is one of the most subtle tasks in estimation. There

are no clear-cut rules; intuition, judgment, experience, and repeated
testing are required to find a model that generalizes well and has good
predictive power. We have already seen one iterative process for choosing
a model—the Box-Jenkins methodology of Section 9.3.5 for time-series
models. In this section we present additional statistical guidelines, less
elaborate than Box-Jenkins, for selecting a model.

Formally, these are decision rules for selecting one of K possible mod-
els The models can be time-series models or regression
models or others, each with a set of parameters that we assume are
estimated by a maximum-likelihood procedure. Let represent
the maximum-likelihood of model based on the N observations

where is the parameter vector of model of
dimension

Selection Criteria The simplest way to select a model is to rank
the models according to some goodness-of-fit criterion and choose the
highest-ranking one. Various decision rules have been proposed to do
this, the two classical ones being the following:

Bayes information criterion (BIC) The BIC of model is defined
as

and the best model is the one with the smallest BIC.

Akaike information criterion (AIC) The AIC of model is de-
fined as

and the best model is the one with the smallest AIC.

A number of competing criteria have been proposed, including the
Fisher information criterion (FIC) [442, 559], cross-validation (CV) [492,
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12], final prediction error (FPE) [464], generalized information criterion
(GIC) [435].

Bayesian Selection Both the BIC and AIC have theoretical roots in
the Bayesian model-selection methodology, which we describe next. Let

be the density function of model Let be the prior
distribution of the parameters of model

Given the data, which model is most likely? By Bayes formula,

where is the likelihood function for model with the prior
Consider the posterior odds of a model over

The Bayes factor indicates whether model is preferred to model
if is > 1, then is preferred.

Varying and summing over we get the posterior prob-
ability of model as

Computing the Bayes factors can be difficult in practice, as calculating
involves multiple integration over the prior density

One alternative is to use a holdout sample to get estimates of and
then use instead of computing the integral explicitly. The
prior distribution is typically also calculated from a holdout sample.

Variable Selection Another task in model selection is deciding, within
a given model class, which variables should be included. It is generally
undesirable to include too many variables. Correlations among inde-
pendent variables can lead to erroneous coefficient estimates, as in the
phenomenon of multicollinearity in linear regression. Even if the ex-
planatory variables are independent, the principle of Occam’s razor11

11 The Occam’s razor principle of scientific investigation states that if E represents the evi-
dence and P(H|E) the probability of a specified hypothesis H given the evidence, if
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prescribes that one should make do with as few variables as possible to
achieve a given level of predictive power.

Formally, given a choice of M possible explanatory variables
which is the best subset to use? We can use the model-

selection criteria discussed above (AIC, BIC, FIC), treating each subset
choice as a different model. However, for large M this is computationally
quite burdensome as there are possible combinations of variables.
A simpler methodology, often employed in practice, is to begin with an
initial subset and then try adding one variable at a time—testing to
see if it increases some measure of predictive power. Similarly, one can
begin with a full set and remove one variable at a time, testing for loss
of predictive power at each step. See Miller [382] for a comprehensive
treatment of subset selection procedures.

More sophisticated search techniques for variable subset selection,
based on hierarchical Bayes models and Gibbs sampling, have also been
proposed (Mitchell and Beauchamp [387]; George and McCulloch [207]).

9.5.1.4 Overfitting
In this section we look at a common problem with fitting a model to

training data—namely, overfitting. Rather than discuss it generally, we
illustrate the problem of overfitting with an example.

Consider a set of data that is generated by the following formula
(unknown to the forecaster):

If we perform a nonlinear regression on the first 10 points using a
degree polynomial of the form we obtain

the fit shown in Figure 9.12. This on surface appears to fit the data
well. A cubic polynomial fit to the same data set does not providing
as exact a fit on the first 11 points. However, using the formula for
the degree polynomial for forecasting is disastrous; for instance, its
projection for the data point is -21.77, while the actual value is 0.66,
and the accuracy of projections further in the future is even worse. The
cubic polynomial, in contrast, has less forecast error. The degree
polynomial is an over-fit; it has too many degrees of freedom (in this case,
11 parameters for 11 data points!). We are in effect “fitting our model to
noise” by using it. A model is said to generalize well if it performs well
on data that it has not been trained on. In forecasting, we are looking

for hypotheses then the simplest of is to be preferred (Kotz
and Johnson [311]).
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for good generalization properties rather than good explanations of past
data.

Such overfitting problems come up during the model-selection phase
for model-based methods and can be limited by considering only models
that are “reasonable” from a subjective, business point of view, rather
than trying blindly to find the best-fitting model based on past data.
For neural networks, the problem is more subtle and difficult to detect.
Because there is no explicit functional form that we choose—and because
three-layer neural networks can approximate practically any function—
the danger that we might overtrain and fit the network to noise is very
high indeed. A good strategy to avoid overfitting is to keep a holdout
sample and use the forecast errors on the holdout sample rather than on
the training data to guide training.
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9.5.2 Forecasting Errors and System Control
An analysis of the forecast errors is often as important as the forecast

itself. Forecast error analysis is useful for the several reasons. First, the
historical observed forecasting errors give a measure of the confidence
one can have in the forecasting system or algorithm. Forecast errors can
be used to estimate the variance in the underlying demand process and
hence can be used to estimate second-order parameters of the distribu-
tion. Errors can also be used to filter out outlier data. Finally, errors
can be used to track the forecast and signal unusual events or instability
in the system. We look at each of these applications below.

9.5.2.1 Measures of Forecast Errors
Suppose we have been running our forecasting system for N periods

and have already constructed N forecasts and made observations of the
forecast relative to the actual values on these N periods. Then the
forecast error for a particular period is given by

where is the observed value and is the forecasted value for period

The following are some measures of forecast error that are used in
practice:

Sum of forecast errors:

Mean error:

The mean error is an estimate of the forecast bias. If the forecasting
system is unbiased, the mean bias should converge to 0 as N increases.

Smoothed error: This is given by the following recursive formula:

where is a smoothing constant.

Mean absolute deviation (MAD):
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Mean squared error (MSE):

Mean absolute percentage error (MAPE):

The quantity is called the relative error and is not defined if
is 0; hence the MAPE calculation should omit such values.

Tracking signal (TS):

It is strongly recommended that at least one of MAD, MSE, or MAPE
and the TS be used to monitor a forecasting system. The primary role
of MAD, MSE, and MAPE measures is to evaluate the performance of
the forecasting system. Lower numbers mean better forecasts.

Among MAD, MSE and MAPE, the choice of which one to use de-
pends strongly on the nature of the forecasts. MSE penalizes large errors
for a single observation much more than MAD. Therefore, it is a better
measure to detect if a few observations have large errors. If we are in-
terested in overall performance, then MAD is generally a better choice.
MAPE is useful for comparing performance across different time series,
as the errors are measured relative to the data values.

9.5.2.2 Bias Detection and Correction
In addition to measuring forecast performance, a system should also

monitor forecast bias. Tracking signal (TS) tests are used to monitor
automated forecasts to see if the system is generating consistently biased
forecasts. Typically, if the TS number exceeds a bound, an alert is
generated for analysts to investigate. Most often in practice such bias is
caused by a special, one-off event, but occasionally a recalibration may
be required because of a fundamental change in the demand process.

There are two common tests for detecting a systematic bias in the
forecast from observed errors. First, assume that the forecast is mea-
sured on a set of N observations. Let
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Then if the forecast is unbiased, the statistic has approximately a
with degrees of freedom, where is the number of

parameters in the model that are being estimated. (See Abraham and
Ledolter [1], p.372.) For large N, is approximately a standard normal
(mean zero, variance one) random variable. For a given significance
level, a statistical test can then be devised with the null hypothesis that
the forecast is unbiased.

A second, more popular operational test for bias is to compare the
absolute value of the tracking signal with a constant. (See Mont-
gomery [388].) The forecasting system is declared biased if

The constant is usually set to be between 4 and 6. Similar tests exist
using variations of the tracking signal formula, one with smoothed error
in the numerator of the TS definition and a constant between 0.2 and
0.5 in the right-hand side of the bias test, and another where MSE is
used instead of MAD in the denominator of the tracking signal formula
and the constant in the bias test changed to be between 2 and 3.

If one knows that the forecasting system has a bias, then it would
appear trivial to fix the bias—just multiply or add a correction factor.
Or better still, recalibrate the system or modify the forecasting algo-
rithms; for instance, the forecast bias could be because of a bias in the
estimation of the parameters of the model (Section 9.2.1.3). But this
assumes we have a precise idea of the magnitude of the bias and that
it is more or less constant. As for recalibrating the model, this is often
an expensive process and can involve a considerable amount of research
and experimentation to come up with a better (unbiased) estimate.

9.5.2.3 Outlier Detection and Correction
Outliers are extreme values of data that are caused by corrupted

records or special nonrecurring conditions in the demand process.
Outlier data can severely disrupt a forecasting system. Smoothing
methods—like the moving-average method—are especially susceptible
to outliers because the presence of an unusual data point will distort the
forecasts for several successive periods.

One technique to guard against outliers is to presmooth the data to
make them more robust to the presence of outliers. The moving-median
smoothing method in one example. Here the data is preprocessed by the
following transformation:
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and the forecast is trained as if were the real data sequence. This is an
example of a nonlinear smoothing method. Many such nonlinear data
smoothers exist. (See Tukey [520].) Care should be exercised, however,
when the data has seasonality or other periodic effects. The data may
first have to be deseasonalized before using such filters.

Another technique is to try to identify and remove outliers before feed-
ing the data to the forecasting system. One such outlier identification
test is to consider a data point an outlier if

where the value of is chosen to be between 5 and 6.

9.6 Industry Models of RM Estimation and
Forecasting

In this section we give some examples of specific RM forecasting mod-
els. The models are intended to be representative of those used in a par-
ticular industry to forecast a particular quantity of interest: for example,
no-shows, cancellations, and groups forecasting in the airline, rental-car,
and hotel industries; ratings forecasting in the media industry; sales re-
sponse functions in the retail industry; promotion effects forecasting for
manufacturers; and load forecasting in the electricity and gas industries.
Many variations of these models are possible, and the examples presented
here are intended only as illustrations—not recommendations—of fore-
casting approaches.

9.6.1 Airline No-Show and Cancellations
Forecasting

Forecasts of cancellation and show-up rates are key inputs to the over-
booking module of an airline RM system. In addition to the statistical
and operational techniques discussed in this chapter so far, this example
also highlights the use of data-mining algorithms for forecasting.

The first problem in cancellation forecasting is coping with reserva-
tions data. If one uses only net-bookings data for forecasts—not un-
common in RM systems—new bookings may hide cancellations. For
instance, if in a period there are 100 bookings on hand, and during
the period 20 new bookings are realized, but 10 current bookings cancel,
then net-bookings data may make it appear that there have been 10 new
bookings and 0 cancellations. Cancellation forecasts based on such data
will then be biased. Similarly, go-shows or walk-ups—that is, people
who show up without reservations (distinguished from regular bookings
by the fact that it is lumpy demand occurring at the time of service)—
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may also hide no-shows. So depending on the data being used and the
requirements of the overbooking optimization, we may need to decide
whether we are forecasting gross (actual) cancellations or net (observed)
cancellations (Figure 9.13).

Both no-show and cancellation rates can be defined at different levels
of aggregation, for the entire cabin or by fare class. Defining rates by
fare class is more accurate as significant differences may exist between
fare classes—for example, some may have penalties for cancelling while
others may not. Cancellations can also be defined over different inter-
vals of time, as incremental cancellations over a given period or total
cancellations over the entire booking period.

Besides the level of aggregation, the cancellation rate and no-show
rate can have different interpretations—(1) as the probability that a
given individual booking will cancel or no-show or (2) as a fraction of
the total number of bookings at a given point of time (either current
time or some time in the future) that are likely to cancel or no-show.
The second interpretation leads to the concept of a cancellation curve
over the booking period. The cancellation rate may change over time
as very early bookings tend to have higher cancellation rates than later
ones (see Figure 9.14). A full cancellation curve is usually needed only
in dynamic overbooking models.

For illustration, consider the binomial model of Section 4.2.1. If there
are N current bookings, the cancellation rate is the probability that
a booking will cancel before the time of service. We define the no-show
rate similarly. Both and are assumed to be constant and
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No-shows and cancellation forecasting can further be divided into two
parts: forecasting the cancellation behavior of customers who already
booked and those who will book in the future. For the former, it is
possible to exploit correlations between customer cancellation probabili-
ties and purchase characteristics like time of booking, source of booking,
amount paid, cancellation penalties, and refund policies associated with
the fare, to improve the forecasts.

Kalka and Weber [280], Feyen and Hüglin [190], and Westerhop [561]
report airline no-show and cancellation forecasting for existing customers
using data-mining and data-discovery tools on PNR data. Some of the
attributes used are origin, destination, flight time, return trip, booking
class, number of passengers traveling together, flight time, number of
connections, and connection time. Feyen and Hüglin [190] use logistic
regression on the attributes and the observed rates for prediction while
Kalka and Weber [280] use induction trees. (See Quinlan [432].)

The methodology in Kalka and Weber [280] can be illustrated in Fig-
ure 9.15 for two attributes—flight time and booking class. The historical
bookings and cancellations are mapped to the attribute space, and we
partition the space by partitioning the ranges on the attributes. This is
somewhat analogous to clustering points into groups, except that we are
now interested in rules for partitioning each attribute dimension, rules
that subsequently will be used to categorize new observations with its
likelihood of cancellation. A cancellation probability is calculated for
each box as the fraction of bookings in that box that cancel. For any
new booking, its cancellation probability is derived by looking up the box
it falls in and taking its corresponding cancellation probability. Data-
mining tools use artificial intelligence rules-based techniques to partition
the customer attribute space and construct an induction tree that gives
a sequence of rules to be applied to classify observations.

9.6.2 Groups Demand and Utilization Forecasting
Bookings for units of five or more are usually classified as groups.

Groups in RM can either be ad-hoc groups (one-shot groups such as
school excursions or crews) or series groups (repeating groups—for ex-
ample, bookings by a package-tour operator). (See Sections 10.1.2
and 10.2.1.) In this section we describe the forecasting tasks associated
with groups.

Forecasting of group bookings demand is rarely done. This is because
ad-hoc groups are such rare events that it makes it difficult to try to
forecast demand from such sources. Series groups, on the other hand,
are negotiated so far in advance that they make forecasting unnecessary.
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However, group-utilization forecasting is an important task. Group
utilization is defined as the percentage of a group reservation that will
eventually show up. In principle, it is no different from cancellations and
no-show forecasting. However, it is treated separately because groups
may act as a unit, with strong correlation between the members of the
unit. For instance, a group may cancel as a whole, in which case there is
a sudden lumpy change in the available capacity. Because of its potential
impact on availability and the higher risk involved in groups canceling
as a whole, group utilization is usually tracked separately from regular
cancellations and no-shows by dedicated analysts or managers.

Analysts also have better information about groups reservations than
individual bookings because the reservation is usually made directly
through personal contact. The source of a group reservation (such as a
tour operator, cruise-line or agency) and type of group (such as a corpo-
rate meeting or convention) also helps in tracking historical usage rates.
Group utilization forecasting differs if the group is an ad-hoc group or
a series group. Ad-hoc groups are more likely to cancel as a whole (or
not pay by the deadline), while series groups, being negotiated contracts
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for a long period, tend to survive till the usage date with only partial
cancellations.

A forecast of group utilization is made on a historical series of uti-
lization ratios constructed for groups with similar characteristics (same
group type, group booking source, market, and so on). The forecast
is usually made for each individual group reservation and updated con-
stantly as new information and confirmations come in. Causal models
are widely used to forecast group reservations because of the rich data
available specific to each individual group. Group utilizations have been
found to be correlated with group type (ad hoc or series), origin loca-
tion of bookings, group size, penalty costs, historic cancellations, book-
ing source, time of booking, and group travel purpose, among others.
Bayesian models are also suitable because they allow analysts’ beliefs on
the group’s utilization to be incorporated into the forecast.

9.6.3 Sell-Up and Recapture Forecasting
Sell-up and recapture are used in some RM models as discussed in

Section 2.6.12 The sell-up probability for a class is the probability that
customers for that class will buy-up to at least one of the other higher
classes (of the same resource) if their class is closed (this is called differ-
ential sell-up rate in Gorin [217]; the sell-up rate used in Belobaba and
Weatherford [37] is only between the class and the next highest class).
Recapture occurs when the customer buys an alternative resource (say,
on a different date or time) if their requested class is closed.

There are several difficulties in estimating buy-up and recapture prob-
abilities. For example, how do we tell if a customer is an “original”
customer or a “recaptured” customer? Looking at transactional data
alone, this is impossible to determine. It is common practice to pass
this burden on to analysts, who are required to input buy-up and recap-
ture probabilities for each market using their best judgment. Given the
number of markets / resources / date combinations, often a single number
is used for each market or for the firm as a whole.

Other approaches are based on data. Gorin [217] proposes the fol-
lowing formula for estimating the sell-up rate of a class for a resource:
Let represent total number bookings in class (over a collection of
sample historical data for the resource). Assume the classes are indexed
with the lower index having a higher fare. Then Gorin [217] defines the

12Andersson [18] defines a customers who neither sells-up nor is recaptured but buys an
alternative product from a competitor, as a deviation.
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sell-up rate as

However, he also states that this estimate likely is biased, so it should
be used with caution. Recapture effects are not considered by Gorin.

Consumer-choice models provide a more systematic approach to buy
up and recapture estimation. An early attempt at such a model is by
Maynes and Wood [368], who build an econometric model of demand for
three latent market segments as a function of price, schedule attributes,
and competitor prices and availability. The ratio of the forecasts of de-
mand for a class on a resource and a lower fare class on the same resource
provides the sell-up probability for the lower class. This approach can
be extended to estimate recapture rate as well. However, these rates are
calculated on a pairwise basis only, independent of what other options
are available at that time.

Andersson [19] presents a richer model of consumer behavior based on
utilities and discrete-choice theory. At any given point of time, a choice
set S is defined as a set of competing resource / class combinations for
class on resource If is closed on then define as the set S
without class on resource The estimate of the recapture rate is then
defined as follows:

= Probability that resource class is chosen
when is closed but all other choices in are open.

= Probability that resource class is chosen
when all choices in S are open.

Then the recapture rate by combination from denoted
is defined as

The probabilities and can be estimated using an
appropriate discrete-choice model. Andersson [19] (see also Köhler [308])
reports a study at Scandinavian Airlines where the choice probabilities
were estimated using a MNL model fit from both transactional data and
passenger surveys. The passenger surveys were in the form of games
(lasting around 10 minutes), presenting alternatives of price, departure
time, restrictions, and airline brand name.

9.6.4 Retail Sales Forecasting
Retail RM requires an estimate of a demand function. Besides price,

advertising, product features, past sales, economic conditions, store lo-
cation, brand effects, weather, and competitor actions are some factors
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that strongly affect sales. Consequently, in retail marketing forecasts, in
contrast to airline or hotel RM, causal models are widely used.

As discussed in Chapter 7, there are two basic approaches to demand
function modeling. One way of incorporating the effects of marketing
variables on sales is through models of individual consumer choice behav-
ior. Then in a bottom-up forecasting fashion, these individual choices
are aggregated to get total demand. Another approach—called aggre-
gate forecasting—is to model aggregate demand directly as a function of
price and other marketing variables. We focus on this latter approach
here, as it is prevalent both in marketing theory and practice, and as we
covered discrete-choice models earlier.

Let Z denote sales, and let the marketing variables be represented
by for multivariate models and by for univariate models:
Consider a basic sales response model of the form

The functional forms are usually designed such that either (1) absolute
change in the marketing variables leads to an absolute change in sales
or (2) percentage (relative) change in the marketing variables leads to
an absolute change in sales. For instance, the function is of the
former kind (since while the function is the latter
kind

The function can be a static function of variables of the cur-
rent period only, or a dynamic function capturing the effects of mar-
keting variables in past periods (for example, advertising done in the
past month has an effect on the sales of this month). Below are some
examples of static sales response functions.

Semilogarithmic model:

Percentage sale in a marketing variable leads to an absolute change
in the sales.

Multiplicative or power model:

The have the interpretation of elasticities. A more general form
of (9.70) is called the interactive model and is given by the sum of all
possible products of the variables:
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It is rarely used in this full form.

Exponential model:

Sales exhibit increasing returns to scale as the value of the marketing
variable (say price) goes down to zero. represents the maximum
possible sales.

Log-reciprocal or S-shaped model:

This function possesses an inflection point at Sales show
increasing marginal returns for less than the inflection point and
decreasing marginal returns from then on.

Other S-shaped curves are possible using logistic models such as the
following log-linear and double-log models:

Gutenberg model:

is a reference value for the marketing variable (for instance aver-
age competition price). The Gutenberg model is a complicated but
flexible function. Simon [471] gives an application using this model.

Next we give some examples of dynamic sales response functions, in
which the sales in a period is a function of variables of the past (lagged)
periods, future (lead) customer actions or the current period:

Geometric distributed-lag model: This is a dynamic model that
relates the sales in period to observed values in previous periods
with exponentially decreasing weights:
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SCAN*PRO model: This is a widely used store-sales model (pro-
posed by Wittink et al. [572]) for determining the effect of promotions
on sales. Denote, for brand in store in period

Sales
Week-of-the-year indicators
Discounted price
Nondiscounted price
0-1 indicator variable, for feature
0-1 indicator variable, for display
Inventory
Error term.

Then the model is given by

The and for each period have to be estimated from data.

There are literally hundreds of models such as these studied by mar-
keting scientists, with many empirically tested on real-world data. Once
a model has been fixed, regression is the most common approach for
estimating static models, while time-series methods (Section 9.3.2) are
common for estimating dynamic models.

9.6.5 Media Forecasting
Forecasting for broadcast media presents some unique challenges.

(Media RM is discussed in detail in Chapter 10.) Prices for adver-
tising are quoted as cost per thousand impressions. For print and tele-
vision firms, the circulation and ratings determine how much the firm
can charge for their advertisement space. Internet media rates are based
on page-views or click-through metrics. Market-research firms such as
Nielsen, IRI, and Media Metrix are dedicated to measuring the size of
the circulation (print), page-views (Internet) and audience (television,
radio).

A broadcaster faces two main forecasting tasks. One is to forecast
ratings for shows by day-of-week and season; the other is to forecast
demand for advertising slots for these shows. Forecasting the latter is
usually much easier than the former because the network has knowledge
of its customers—their historical preferences and buying patterns, re-
quired demographics, and in many cases, even their advertising budget.
A forecast of demand is first constructed by making an estimate of each
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customer’s demand (often manual, based on last year’s demand) and
then making a tentative sales plan satisfying the customer’s preferences
based on the ratings forecasts (Bollapragada et al. [83]). In this section,
we concentrate on ratings forecasts, which is a good example of a rather
difficult causal forecasting problem.

Few TV or radio managers rely on formal ratings forecasting models
for their own programming decisions; surveys, gut feeling, and innate
programming intuition seem to be the dominant methodologies in prac-
tice. These forecasts, though often subjective, can be helpful for RM
purposes as well, as they reflect managerial judgment (for instance, they
can be used to form priors in a Bayesian framework).

Recently, several methods have been proposed based on formal models
of consumer viewing behavior. Television viewing habits are conceptu-
alized as a two-stage process. In the first stage, the individual decides
whether or not to watch TV. This leads to a forecast of the total ag-
gregate TV viewing population at any given time. Once a decision to
watch TV is made, the individual chooses one of the available programs,
which leads to show-level ratings. (See Gensch and Shaman [206].) This
two-stage model suggests using a time-series model to predict aggre-
gate viewership by time and day of week based on recent programming
data, and then a discrete-choice model to predict ratings by show. Past
viewership, viewing time, seasonality, and regional differences are good
predictors of aggregate viewership, while the show characteristics, slot,
show-promotion, lead-ins (the popularity of the program before) and
lead-outs (and the program that runs after) influence the market share
of a show.

For example, Reddy, Aronson, and Stam [437] building on the work
of Horen [257], use a regression model to predict the ratings of TV
shows running for multiple seasons and hence with some historical data.
Shows are classified into homogeneous types, based on their character-
istics (movie, news, afternoon talk show). The model is:

with the following variable definitions,
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Rating of show in time slot
Measure of the relative perceived attractiveness
of show of type (managerial rating from 0 to 10)
0-1 indicator variable, 1 if show is of type 0 otherwise
0-1 indicator variable, 1 if show if show
is scheduled on day 0 otherwise
0-1 indicator variable, 1 if show is in time slot 0 otherwise
0-1 indicator variable, 1 if show is an hour-long show, 0 otherwise
0-1 indicator variable, 1 if show

(of type ) leads into show (of type ), 0 otherwise
Residual error term.

9.6.6 Gas-Load Forecasting
We next look briefly at a gas-load forecasting system using neural-

network methods, reported to be implemented at Williams Gas (Lamb
and Logue [327]). The model forecasts short-term (between one to five
days ahead) demand for gas in a pipeline. The pipeline has thousands
of meters drawing gas from it, each with variable demand. The factors
that affect this demand were identified as

Weather parameters (such as temperature, humidity, wind direction,
and so on supplied by weather data vendors)
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Historic load

Calendar (hour of the day, day of the week, holiday, month)

Expected gas demand for each meter.

Price (historical, current and competitor prices).

Figure 9.16 shows an example of a three-layer neural network using some
of these potential inputs.

9.7 Notes and Sources
We have given many reference in the text of the chapter. Here we

gather some general references on the topics of the chapter along with
some additional pointers.

Regression-related topics can be found in any advanced statistic or
econometric books. Here are some references: DeGroot [151] and
Kvanli [318] for introductory statistics; Maddala [353], Greene [220],
and Judge et al. [273] for econometrics. Some books devoted exclusively
to regression are Draper and Smith [161], Guttman [231], and Neter and
Wasserman [403].

Books on forecasting are available at all levels. We recommend Mont-
gomery et al. [388] for a general introduction to operational forecast-
ing and Harvey [242, 243] for a more advanced treatment of time-series
analysis and Kalman filtering.

For books on neural networks, we recommend Bishop [69] for a very
readable yet rigorous introduction to neural networks (albeit for pat-
tern recognition) Our treatment follows also Müller, Reinhardt, and
Strickland [397]. Some useful survey papers on the use of neural net-
works in forecasting are Poli and Jones [423], Cheng and Tittering-
ton [110], Zhang, Patuwo, and Hu [588], Hill, Marquez, O’Connor, and
Remus [252], Hill, O’Connor, and Remus [253]. The application of neural
networks to predict consumer choice can be found in West, Brockett, and
Golden [562] and Dasgupta, Dispensa and Ghose [144].

For estimation of price-response functions and market-share mod-
els, see the following marketing science text books: Eliashberg and
Lilien [174], Wedel and Kamakura [558], Hanssens, Parsons, and Schultz
[235], Cooper and Nakanishi [127], Dasgupta, Dispensa, and Ghose [144],
Hruska [259], West, Brockett, and Golden [562], Hill et al. [253], Zhang
[588], and Lee et al. [335]. Kalyanam [283] proposes a Bayesian mixture
model of pricing specifications when there is no consensus on the right
model.

See Berry, Levinshohn, and Pakes [52], Berry [53], Besanko, Gupta,
and Jain [63] and Chintagunta, Kadiyali, and Vilcassim [116] for es-
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timation in a competitive market similar to the method described in
Example 9.9. The problem of endogenity in estimation has received
much recent attention in the marketing science literature spurred by
the paper of Berry [53]. See also Chintagunta, Kadiyali and Vilcas-
sim [116] and Villas-Boas and Winer [536] for further studies on en-
dogeneity. Nevo [406] gives an excellent practical guide to estimating
random-coefficient logit models of demand.

The Bayesian method of updating of parameters can be incorporated
into many of the time-series methods of Section 9.3.2 also in a fairly
straightforward manner. (See, for instance, Montgomery et al. [388].)
The empirical Bayes method that we cover in this chapter is not the only
possibility for handling hierarchical Bayes methods. See Lindley and
Smith [345] and Blattberg and George [75] for alternatives. Hierarchical
Bayes methods have also found application in modeling heterogeneity in
preferences in discrete-choice models (Albert and Chib [6]; Allenby and
Rossi [11]; Huber and Train [260]), and in conjoint analysis (Allenby and
Ginter [9]; Lenk et al. [339]).

Literature on combining forecasts is also quite vast, given its promise
of returning more than the sum of its parts. The standard references in
this area are Newbold and Granger [407], Granger and Newbold [218],
Makridakis and Winkler [356], Clemen and Winkler [122], Clemen [123],
Gupta and Wilson [230], Schmittlein, Kimm, and Morrison [457], Mor-
rison and Schmittlein [391], and Foster and Vohra [192]. See also Mont-
gomery et al. ([388], p.192).

One of the few textbooks dedicated to the EM algorithm is McLach-
lan and Krishnan [377]. The book also contains many applications,
convergence properties and lists a large number of EM references. Con-
nections with the Gibbs method is mentioned, but the reader should
refer to Schafer [456] dedicated to MCMC methods. For an introduc-
tion to Gibbs Sampling, see the article of Casella and George [101] and
Gilks, Richardson and Spiegelhalter [212]. For Gibbs algorithm applied
to missing-data problems, see Gelfand, Smith and Lee [203].

Both the origins of EM and Gibbs sampling (at least their ideas)
can be traced far back, but Dempster et al. [152] and Geman and Ge-
man [205] are credited with their invention and popularization.

The original paper of Kaplan and Meier [289] is still a good introduc-
tion to the Kaplan-Meier estimator. Many books on survival analysis
(Miller [383]; Cox and Oakes [134]) also describe the method in detail.
Logistic regression has been proposed as a parametric alternative to the
Kaplan-Meier curve, with good properties and flexibility, and with all
the advantages of a parametric form (Efron [173]).
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The unconstraining methods described here are not the only alterna-
tives though. It is possible to use the bootstrap, jackknife as well as
regression with censored data to get estimates of the parameters of a
censored sample. See Efron [171] and Davison and Hinckley [148] for
an introduction to using bootstrap for unconstraining and for regression
with censored data.

APPENDIX 9.A: Back-Propagation Algorithm for
Neural-Network Training

We illustrate the back-propagation algorithm for training a neural network on our
example of Figure 9.9.

Because we chose the linear function as the activation function for input
and output nodes, we represent, by a slight abuse of notation, the instance of
an input and its corresponding output of the neural net as and

respectively. As always, let be the actual observation at the
instance. Assume we are given a set of N training data instances (a set of N

input-output pairs that we will use to determine weights of
the neural network).

For training instance the state of node in the hidden layer is then
where

where
and the state of node of the output layer is

For the given set of transfer functions our objective is to choose the
weights and the activation threshold values such that they minimize
the squared deviation between the output values of the network and the actual ob-
servations:

The error back-propagation method performs this minimization iteratively in two
stages (for a three-layer network), the first stage corresponding to the output layer and
the second stage to the hidden layer. At each stage, the weights and threshold values
are updated in the spirit of the steepest-descent algorithm of nonlinear optimization
(see Bertsekas [59]), as follows:

STEP  0:  Choose an initial set of values for the       and       Choose a step-size
(which can either be fixed or chosen according to a step-size selection rule; see
Bertsekas [59]).

STEP 1: Update the for arcs between the hidden layer and the output layer as
follows:

where
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Update the of the output layer as follows:

where

STEP 2: Update the     for  arcs between the input layer and the hidden layer as
follows:

where (applying differentiation using the chain rule)

Update the of the hidden layer as follows:

where

STEP 3: If convergence criterion is not met, GOTO STEP 1.


